The geometrically and constitutively nonlinear response of an infinite, circular, cylindrical shell submerged in an infinite fluid medium to a transverse, transient acoustic wave is analyzed. Circumferential Fourier series solutions are obtained through the numerical integration of coupled ordinary differential equations and convolution integrals. Numerical results are presented in the form of response histories, response snapshots, and iso-damage curves for incident waves of rectangular pressure profile. Response solutions obtained with the first-order doubly asymptotic approximation are compared with their “exact” counterparts. It is found that doubly asymptotic approximations are unsuitable for two-dimensional, shock-response analysis of yielding submerged structures.

This content is only available via PDF.
You do not currently have access to this content.