In a previous paper (Chen and Bogy, 1992) we studied the effects of various load parameters, such as friction force, transverse mass, damping, stiffness and the analogous pitching parameters, of a stationary load system in contact with the spinning disk on the natural frequencies and stability of the system when the original eigenvalues of interest are well separated. This paper is a follow-up investigation to deal with the situations in which two eigenvalues of the freely spinning disk are almost equal (degenerate) and strong modal interactions occur when the load parameters are introduced. After comparing an eigenfunction expansion with the finite element numerical results, we find that for each of the transverse and pitching load parameters, a properly chosen two-mode approximation can exhibit all the important features of the eigenvalue changes. Based on this two-mode approximation we study the mathematical structure of the eigenvalues in the neighborhood of degenerate points in the natural frequency-rotation speed plane. In the case of friction force, however, it is found that at least a four-mode approximation is required to reproduce the eigenvalue structure. The observations and analyses presented provide physical insight into the modal interactions induced by various load parameters in a spinning disk-stationary load system.

This content is only available via PDF.
You do not currently have access to this content.