A “multicontinuum” approach to structural analyses of composites is described. A continuum field is defined to represent each constituent material along with the traditional continuum field associated with the composite. Finite element micromechanics is used to establish relationships between composite and constituent field variables. These relationships uncouple the micromechanics from structural solutions and render an efficient means of extracting constituent information during the course of a finite element structural analysis. Equations are developed for the case of a linear elastic reinforcing material embedded in a linear viscoelastic matrix and verified by comparison with results of finite element micromechanics.
Issue Section:
Technical Papers
1.
Aboudi, J., 1991, Mechanics of Composite Materials: A Unified Micromechanics Approach, Elsevier, Amsterdam.
2.
Brockenbrough
J. R.
Suresh
S.
Wienecke
H. A.
1991
, “Deformation of Metal Matrix Composites with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape
,” Acta Metall. Mater.
, Vol. 39
, No. 5
, pp. 735
–752
.3.
Cook, R. D., Malkus, D. S., Plesha, M. E., 1989, Concepts and Applications of Finite Element Analysis, John Wiley and Sons, New York.
4.
Dvorak
G. J.
1992
, “Transformation Field Analysis of Inelastic Composite Materials
,” Proc. R. Soc. London
, Vol. 437
, pp. 311
–327
.5.
Dvorak
G. J.
Benveniste
Y.
1992
, “On Transformation Strains and Uniform Fields in Multiphase Elastic Media
,” Proc. R. Soc. London
, Vol. 437
, pp. 291
–310
.6.
Dvorak
G. J.
Bahei-El-Din
Y. A.
Wafa
A. M.
1994
, “Implementation of the Transformation Field Analysis for Inelastic Composite Materials
,” Comput. Mech.
, Vol. 14
, pp. 201
–228
.7.
Eshelby
J. D.
1957
, “The Determination of the Elastic Field of an Ellipsoidal Inclusion and Related Problems
,” Proc. R. Soc. London
, Vol. 241
, pp. 376
–396
.8.
Flu¨gge, W., 1967, Viscoelasticity, Blaisdell, Waltham, MA.
9.
Garnich
M. R.
Hansen
A. C.
1996
, “A Multicontinuum Theory for Thermal-Elastic Structural Analysis of Composites
,” J. Compo. Mater.
, Vol. 31
, No. 1
, pp. 71
–86
.10.
Hashin
Z.
1965
, “Viscoelastic Behavior of Heterogeneous Media
,” ASME JOURNAL OF APPLIED MECHANICS
, Vol. 32
, pp. 630
–636
.11.
Hill
R.
1963
, “Elastic Properties of Reinforced Solids: Some Theoretical Principles
,” J. Mech. Phys. Solids
, Vol. 11
, pp. 357
–372
.12.
Hughes
T. J. R.
Taylor
R. L.
1978
, “Unconditionally Stable Algorithms for Quasi-Static Elasto/Visco-Plastic Finite Element Analysis
,” Comput. & Struct.
, Vol. 8
, pp. 169
–173
.13.
Krishnaswamy
P.
Tuttle
M. E.
Emery
A. F.
1990
, “Finite Element Modeling of Crack Tip Behavior in Viscoelastic Materials, Part I: Linear Behavior
,” Int. J. Num. Meth. Engng.
, Vol. 30
, pp. 371
–387
.14.
Levy
A.
Pifko
A. B.
1981
, “On Computational Strategies for Problems Involving Plasticity and Creep
,” Int. J. Num. Meth. Engng.
, Vol. 17
, pp. 747
–771
.15.
Mehrabadi
M. M.
Cowen
S. C.
1990
, Eigentensors of Linear Anisotropic Elastic Materials
, J. Mech. Appl. Math.
, Vol. 43
, pp. 15
–41
.16.
Nemat-Nasser, S., and Hori, M., 1993, Micromechanics: Ovelzlll Properties of Heterogeneous Materials, Elsevier, Amsterdam.
17.
Pecknold
D. A.
Rabman
S.
1994
, “Micromechanics-Based Structural Analysis of Thick Laminated Composites
,” Computers and Struct.
, Vol. 51
, No. 2
, pp. 163
–179
.18.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1989, Numerical Recipes, The Art of Scientific Computing (FORTRAN Version), Cambridge University Press, Cambridge, UK.
19.
Ravichandran
K. S.
Seetharaman
V.
1993
, “Prediction of Steady State Creep Behavior of Two Phase Composites
,” Acta Metall. et Mater.
, Vol. 41
, No. 12
, pp. 3351
–3361
.20.
Schapery, R. A., 1974, “Viscoelastic Behavior and Analysis of Composite Materials,” Composite Materials, Vol. 2, G. P. Sendeckyj, ed., Academic Press, New York, pp. 85–168.
This content is only available via PDF.
Copyright © 1997
by The American Society of Mechanical Engineers
You do not currently have access to this content.