The exact, closed-form, three-dimensional solutions for the steady motion of traveling, sagged, elastic cables under arbitrarily distributed and concentrated loading are developed in this paper. Three components of displacement describing two equilibrium states of an extensible traveling elastic cable are derived. These exact solutions apply to straight and sagged cables traveling under their own weight and uniformly distributed loading. The exact solutions are also used to investigate the steady motion of three-dimensional traveling cables under the uniformly distributed and concentrated loading. Traveling elastic cables with large sag can be modeled approximately through the inextensible cable model when both the loading and the translation speed are very small. A slightly sagged cable must be modeled as extensible, rather than inextensible, even though both the loading and transport speed are very small. These solutions can be applied to multispan cable structures. [S0021-8936(00)02601-5]

1.
Rohrs
,
J. H.
,
1851
, “
On the Oscillations of a Suspension Cable
,”
Trans. Cambridge Philos. Soc.
,
9
, pp.
379
398
.
2.
Routh E. J., 1884, The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies, 4th Ed., MacMillan and Co., London.
3.
Pugsley
,
A. G.
,
1949
, “
On Natural Frequencies of Suspension Chain
,”
Q. J. Mech. Appl. Math.
,
2
, pp.
412
418
.
4.
Saxon
,
D. S.
, and
Cahn
,
A. S.
,
1953
, “
Modes of Vibration of a Suspended Chain
,”
Q. J. Mech. Appl. Math.
,
6
, pp.
273
285
.
5.
Simpson
,
A.
,
1966
, “
Determination of the Inplane Natural Frequencies of Multispan Transmission Lines by a Transfer Matrix Method
,”
Proc. Inst. Electr. Eng.
,
113
, pp.
870
878
.
6.
Irvine
,
H. M.
, and
Caughey
,
T. K.
,
1974
, “
The Linear Theory of Free Vibrations of a Suspended Cable
,”
Proc. R. Soc. London, Ser. A
,
341A
, pp.
299
315
.
7.
Hagedorn
,
P.
, and
Schafer
,
B.
,
1980
, “
On Nonlinear Free Vibrations of an Elastic Cable
,”
Int. J. Non-Linear Mech.
,
15
, pp.
333
340
.
8.
Luongo
,
A.
,
Rega
,
G.
, and
Vestroni
,
F.
,
1984
, “
Planar Non-linear Free Vibrations of an Elastic Cable
,”
Int. J. Non-Linear Mech.
,
19
, pp.
39
52
.
9.
Perkins
,
N. C.
,
1992
, “
Modal Interactions in the Nonlinear Response of Elastic Cables Under Parametric/External Excitation
,”
Int. J. Non-Linear Mech.
,
27
, No.
2
, pp.
233
250
.
10.
Simpson
,
A.
,
1972
, “
On the Oscillatory Motions of Translating Elastic Cables
,”
J. Sound Vib.
,
20
, No.
2
, pp.
177
189
.
11.
Triantafyllou
,
M. S.
,
1985
, “
The Dynamics of Translating Cables
,”
J. Sound Vib.
,
103
, No.
2
, pp.
171
182
.
12.
Perkins
,
N. C.
, and
Mote
, Jr.,
C. D.
,
1987
, “
Three-Dimensional Vibration of Traveling Elastic Cables
,”
J. Sound Vib.
,
114
, No.
3
, pp.
325
340
.
13.
Perkins
,
N. C.
, and
Mote
, Jr.,
C. D.
,
1989
, “
Theoretical and Experimental Stability of Two Translating Cable Equilibria
,”
J. Sound Vib.
,
128
, No.
3
, pp.
397
410
.
14.
Dickey
,
R. W.
,
1969
, “
The Nonlinear String Under a Vertical Force
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
17
, No.
1
, pp.
172
178
.
15.
Antman
,
S. S.
,
1979
, “
Multiple Equilibrium States of Nonlinear Elastic Strings
,”
SIAM (Soc. Ind. Appl. Math.) J. Appl. Math.
,
37
, No.
3
, pp.
588
604
.
16.
O’Reilly
,
O. M.
, and
Varadi
,
P.
,
1995
, “
Elastic Equilibria of Translating Cables
,”
Acta Mech.
,
108
, pp.
189
206
.
17.
Healey
,
T. J.
, and
Papadopoulos
,
J. N.
,
1990
, “
Steady Axial Motions of Strings
,”
ASME J. Appl. Mech.
,
57
, pp.
785
787
.
18.
O’Reilly
,
O. M.
,
1996
, “
Steady Motions of a Drawn Cable
,”
ASME J. Appl. Mech.
,
63
, pp.
180
189
.
19.
Irvine, H. M., 1974, Cable Structures, The MIT Press, Cambridge, MA.
20.
Yu
,
P.
,
Wong
,
P. S.
, and
Kaempffer
,
F.
,
1995
, “
Tension of Conductor Under Concentrated Loads
,”
ASME J. Appl. Mech.
,
62
, pp.
802
809
.
21.
Luo
,
A. C. J.
,
Han
,
R. P. S.
,
Tyc
,
G.
,
Modi
,
V. J.
, and
Misra
,
A. K.
,
1996
, “
Analytical Vibration and Resonant Motion of a Stretched, Spinning, Nonlinear Tether
,”
AIAA J. Guidance, Control Dyn.
,
19
, No.
5
, pp.
1162
1171
.
You do not currently have access to this content.