A wavelet-Galerkin method for periodic heterogeneous media is presented. The advantages are to remove the mesh and to make adaptivity easier. Numerical results are presented. A specific study of interfaces in a Al-SiC composite is given. [S0021-8936(00)00301-9]
Issue Section:
Brief Notes
1.
Charton
, P.
, and Perrier
, V.
, 1996
, “A Pseudo-Wavelet Scheme for the Two Dimensional Navier-Stokes Equation
,” Comp. Appl. Math.
, 15
, pp. 139
–160
.2.
Lazaar
, S.
, Ponenti
, P. J.
, Liandrat
, J.
, and Tchamitchian
, P.
, 1994
, “Wavelet Algorithms for Numerical Resolution of Partial Differentiable Equations
,” Comput. Methods Appl. Mech. Eng.
, 116
, pp. 309
–314
.3.
Dumont, S., 1996, “Ondelettes, Homoge´ne´isation Pe´riodique et Elasticite´,” Ph.D. thesis, Universite´ Montpellier 2.
4.
Dumont
, S.
, and Lebon
, F.
, 1996
, “Wavelet-Galerkin Method for Heterogeneous Media
,” Comput. Struct.
, 61
, pp. 55
–65
.5.
Dumont
, S.
, and Lebon
, F.
, 1999
, “Wavelet-Galerkin Method for Plane Elasticity
,” Comp. Appl. Math.
, 18
, pp. 127
–142
.6.
Daubechies
, I.
, 1992
, “Orthonormal Bases of Compactly Supported Wavelets
,” Commun. Pure Appl. Math.
, 41
, pp. 909
–998
.7.
Dumont
, S.
, and Lebon
, F.
, 1996
, “Representation of Plane Elastostatics Operators in Daubechies Wavelets
,” Comput. Struct.
, 60
, pp. 561
–569
.8.
Hashin
, Z.
, and Strickman
, S.
, 1963
, “A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials
,” J. Mech. Phys. Solids
, 11
, pp. 127
–140
.9.
Hill
, R.
, 1964
, “Theory of Mechanical Properties of Fiber-Strenghened Materials
,” J. Mech. Phys. Solids
, 12
, pp. 199
–212
.10.
Bensoussan, A., Lions, J. L., and Papanicolaou, G., 1978, Asymptotic Analysis for Periodic Structures, 1st Ed., North-Holland, Amsterdam.
11.
Dumontet
, H.
, 1983
, “Homoge´ne´isation par De´veloppement en Se´ries de Fourier
,” C. R. Acad. Sci. Paris
, 296
, pp. 1625
–1628
.12.
Beylkin
, G.
, 1992
, “On the Representation of Operators in Bases of Compactly Supported Wavelets
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
, 29
, pp. 1716
–1740
.13.
Hackbusch, W., 1985, Multigrid Method and Applications, Springer-Verlag, New York.
14.
Lebon
, F.
, 1995
, “Two-Grid Method for Regularized Frictional Elastostatics Problems
,” Eng. Comput.
, 12
, pp. 657
–664
.15.
Ould Khaoua, A., 1995, “Etude The´orique et Nume´rique de Proble`mes de Couches Minces,” Ph.D. thesis, Universite´ Montpellier 2.
16.
Ould Khaoua, A., Lebon, F., Licht, C., and Michaille, G., 1996, “Thin Layers in Elasticity: A Theoretical and Numerical Study,” Proceedings of the 1996 ESDA Conference, Vol. 4, ASME, New York, pp. 171–178.
17.
Lebon
, F.
, Ould Khaoua
, A.
, and Licht
, C.
, 1997
, “Numerical Study of Soft Adhesively Bonded Joints in Finite Elasticity
,” Comp. Mech.
, 21
, pp. 134
–140
.18.
Garboczi
, E. J.
, and Bentz
, D. P.
, 1991
, “Digital Simulation of Interfacial Packing in Concrete
,” J. Mater. Res.
, 6
, pp. 196
–201
.19.
Herve´
, E.
, and Zaoui
, A.
, 1995
, “Elastic Behavior of Multiply Coated Fibre-Reinforced Composites
,” Int. J. Eng. Sci.
, 33
, pp. 1419
–1433
.20.
Lagache
, M.
, Agbossou
, A.
, Pastor
, J.
, and Muller
, D.
, 1994
, “Role of Interphase on the Elastic Behavior of Composite Materials: Theoretical and Experimental Analysis
,” J. Compos. Mater.
, 28
, pp. 1140
–1157
. Copyright © 2000
by ASME
You do not currently have access to this content.