This study develops an integrated micro-macro model of reactive flow in a porous medium consisting of spatially periodic hexagonal array of solid reacting cylinders. The micro model describes the growth of reaction product on the solid reactant surface. The macro flow of the infiltrant fluid is described by Darcy’s law. The transient permeability and thus advancement of the infiltration front are determined as a function of process parameters from the micro model. Crucial process parameters that influence the advance of the fluid front are identified. The results from this investigation can be used to optimize the manufacture of ceramic-matrix composites. [S0021-8936(00)02703-3]

1.
Hillig
,
W. B.
,
Mehan
,
R. L.
,
Morelock
,
C. R.
,
DeCarlo
,
V. J.
, and
Laskow
,
W.
,
1974
, “
Silicon/Silicon Carbide Composites
,”
Am. Ceram. Soc. Bull.
,
54
, No.
12
, pp.
1054
1056
.
2.
Hillig
,
W. B.
,
1985
, “
Ceramic Composites by Infiltration
,”
Ceram. Eng. Sci. Proc.
,
6
, pp.
674
683
.
3.
Hillig
,
W. B.
,
1988
, “
Melt Infiltration Approach to Ceramic Matrix Composites
,”
J. Am. Ceram. Soc.
,
71
, pp.
C96–C99
C96–C99
.
4.
Hillig, W. B., 1990, “Melt Infiltration Process for Making Ceramic-Matrix Composites,” Fiber Reinforced Ceramic Composites, K. S. Mazdiyasni, ed., Noyes, Park Ridge, NJ, pp. 260–277.
5.
Ness
,
J. N.
, and
Page
,
T. F.
,
1986
, “
Microstructural Evolution in Reaction-Bonded Silicon Carbide
,”
J. Mater. Sci.
,
21
, pp.
1377
1397
.
6.
Popper, P., 1960, “The Preparation of Dense Self-Bonded Silicon Carbide,” Special Ceramics, Heywood, London, p. 209.
7.
Forrest, C. W., Kennedy, P., and Shennan, J. V., 1972, “The Fabrication and Properties of Self-Bonded Silicon Carbide Bodies,” Special Ceramics, Vol. 5, British Ceramic Research Association, Stoke-on-Trent, UK, pp. 99–102.
8.
Tomas A˚stro¨m
,
B.
,
Byron Pipes
,
R.
, and
Advani
,
S. G.
,
1992
, “
On Flow Through Aligned Fiber Beds and Its Application to Composites Processing
,”
J. Compos. Mater.
,
26
, No.
9
, pp.
1351
1373
.
9.
Edwards, G. R., and Olson, D. L., 1987, “The Infiltration Kinetics of Aluminum in Silicon Carbide Compacts,” Defense Technical Information Center (DTIC) Technical Report, July.
10.
Martins
,
G. P.
,
Olson
,
D. L.
, and
Edwards
,
G. R.
,
1988
, “
Modeling of Infiltration Kinetics for Liquid Metal Processing of Composites
,”
Metall. Trans. B
,
19B
, Feb., pp.
95
101
.
11.
Fitzer
,
E.
, and
Gadow
,
R.
,
1986
, “
Fiber Reinforced Silicon Carbide
,”
Am. Ceram. Soc. Bull.
,
65
, No.
2
, pp.
326
335
.
12.
Fitzer, E., and Gadow, R., 1984, “Investigations of the Reactivity of Different Carbons With Liquid Silicon,” Proceedings of the International Symposium on Ceramic Components for Engines, Ceramic Society of Japan, Hyakunicho, Japan, pp. 561–572.
13.
Sotirchos
,
S. V.
, and
Yu
,
Huei-Chung
,
1985
, “
Mathematical Modeling of Gas-Solid Reactions With Solid Product
,”
Chem. Eng. Sci.
,
40
, No.
11
, pp.
2039
2052
.
14.
Bhatia
,
S. K.
, and
Perlmutter
,
D. D.
,
1980
, “
A Random Pore Model for Fluid-Solid Reactions: I. Isothermal, Kinetic Control
,”
AIChE J.
,
26
, No.
3
, p.
379
379
.
15.
Burganos
,
V. N.
, and
Sotirchos
,
S. V.
,
1987
, “
Diffusion in Pore Networks: Effective Medium Theory and Smooth Field Approximation
,”
AIChE J.
,
33
, No.
10
, pp.
1678
1689
.
16.
Gavalas
,
G. R.
,
1980
, “
A Random Capillary Model With Application to Char Gasification at Chemically Controlled Rates
,”
AIChE J.
,
26
, No.
4
, pp.
577
585
.
17.
Chiang
,
Y.-M.
,
Messner
,
R. P.
,
Terwilliger
,
C. D.
, and
Behrendt
,
D. R.
,
1991
, “
Reaction Formed Silicon Carbide
,”
Mater. Sci. Eng.
,
A144
, pp.
63
74
.
18.
Messner
,
R. P.
, and
Chiang
,
Y.-M.
,
1988
, “
Processing of Reaction-Bonded Silicon Carbide Without Residual Silicon Phase
,”
Ceram. Eng. Sci. Proc.
,
9
, No.
7–8
, pp.
1052
1060
.
19.
Brittin
,
W. E.
,
1946
, “
Liquid Rise in a Capillary Tube
,”
J. Appl. Phys.
,
17
, pp.
37
44
.
20.
Gebart
,
B. R.
,
1992
, “
Permeability of Unidirectional Reinforcements for RTM
,”
J. Compos. Mater.
,
26
, No.
8
, p.
1100
1100
.
21.
Cai
,
Zhong
,
1992
Analysis of Mold Filling in RTM Process
,”
J. Compos. Mater.
,
26
, No.
9
, p.
1310
1310
.
22.
Cai
,
Zhong
,
1993
, “
A Generalized Model for Flow of Polymer Fluids Through Fibrous Media
,”
J. Adv. Mater.
,
25
, No.
1
, pp.
58
63
.
23.
Chan
,
A. W.
,
Larive
,
D. E.
, and
Morgan
,
R. J.
,
1993
, “
Anisotropic Permeability of Fiber Preforms: Constant Flow Rate Measurement
,”
J. Compos. Mater.
,
27
, No.
10
, p.
996
996
.
24.
Messner, R. P., and Chiang, Y.-M., 1990, “Liquid-Phase Reaction Bonding of Silicon Carbide Using Alloyed Si-Mo Melts,” J. Am. Ceram. Soc., pp. 73–1193.
25.
Watson, K. K., 1963, “The Permeability of an Idealized Two-Dimensional Porous Medium Using the Navier-Stokes Equations,” Fourth Australia-New Zealand Conference on Soil Mechanics and Foundation Engineering, pp. 37–40.
26.
Westhuizen
,
J. Vd.
, and
Prieur Du Pleiss
,
J.
,
1994
, “
Quantification of Unidirectional Fiber Bed Permeability
,”
J. Compos. Mater.
,
28
, No.
7
, pp.
619
637
.
27.
Ishida
,
M.
, and
Wen
,
Y.
,
1965
, “
Comparison of Kinetic and Diffusional Models for Solid-Gas Reactions
,”
AIChE J.
,
14
, No.
2
, pp.
311
317
.
28.
Levenspiel, O., 1972, Chemical Reaction Engineering, 2nd Ed., John Wiley and Sons, New York, pp. 349–408.
29.
Froment and Bischoff, Advanced Chemical Reactor Design, 1st Ed.,
30.
Fogler, H. S., 1992, Elements of Chemical Reaction Engineering, 2nd Ed. (Prentice-Hall International Series in the Physical and Chemical Engineering Sciences), Prentice-Hall, Englewood Cliffs, NJ.
31.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, John Wiley and Sons, New York.
32.
Yagi, S., and Kunii, D., 1955, Fifth Symposium (International) on Combustion Van Nostrand Reinhold, New York, p. 231.
33.
Ausman
,
J. M.
, and
Watson
,
C. C.
,
1962
,
Chem. Eng. Sci.
,
17
, p.
323
323
.
34.
Wen
,
C. Y.
, and
Wang
,
S. C.
,
1970
, “
Thermal and Diffusional Effects in Noncatalytic Solid Gas Reactions
,”
Ind. Eng. Chem.
,
62
, No.
8
, pp.
30
51
.
35.
Reint
de Boer
,
1996
, “
Highlights in the Historical Development of the Porous Media Theory: Toward a Consistent Macroscopic Theory
,”
Appl. Mech. Rev.
,
49
, pp.
201
262
.
36.
Adler, P. M., 1992, Porous Media: Geometry and Transports (Butterworth-Heineman Series in Chemical Engineering), Butterworths, London.
37.
Rege
,
S. D.
, and
Fogler
,
H. S.
,
1989
, “
Competition Among Flow, Dissolution, and Precipitation in Porous Media
,”
AIChE J.
,
35
, No.
7
, pp.
1177
1185
.
38.
Gopalaswamy, R., 1997, Ph.D. thesis, Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA.
39.
Rajesh
,
G.
, and
Bhagat
,
R. B.
,
1998
, “
Modeling Micro Level Volume Expansion During Reactive Melt Infiltration Using Non-Isothermal Unreacted-Core Shrinking Models
,”
Modell. Simul. Mater. Sci. Eng.
,
6
, pp.
771
786
.
40.
Rajesh
,
G.
, and
Bhagat
,
R. B.
,
1997
, “
Micro Modeling of Reactive Melt Infiltration for SiC/SiC Ceramic-Matrix Composites
,”
J. Sci. Eng. Compos. Mater.
,
6
, No.
3
, pp.
169
184
.
41.
Rajesh
,
G.
, and
Bhagat
,
R. B.
,
1999
, “
Infiltration of Liquid Metals in Porous Compacts: Modeling of Permeabilities During Reactive Melt Infiltration
,”
Transp. Porous Media
,
36
, No.
1
, pp.
43
68
.
42.
Mazet
,
N.
,
1992
, “
Modeling of Gas-Solid Reactions. 1. Nonporous Solids
,”
Int. Chem. Eng.
,
32
, No.
2
, pp.
271
284
.
43.
Mazet
,
N.
, and
Spinner
,
B.
,
1992
, “
Modeling of Gas-Solid Reactions. 2. Porous Solids
,”
Int. Chem. Eng.
,
32
, No.
3
, pp.
395
408
.
44.
Scho¨nberger
,
E.
, and
Heinrich
,
J.
,
1993
, “
Differential Thermoanalytical Investigation of the Reaction of Carbon With Silicon to Silicon Carbide
,”
Cer. For. Int.
,
70
, No.
4
, pp.
161
164
.
45.
Pampuch
,
R.
,
Walasek
,
E.
, and
Bialoskorski
,
J.
,
1986
, “
Reaction Mechanism in Carbon-Liquid Silicon Systems at Elevated Temperatures
,”
Ceram. Int.
,
12
, pp.
99
106
.
You do not currently have access to this content.