This paper models the domain dynamics in a ferroelastic epilayer within the time-dependent Ginzburg-Landau (TDGL) framework. Constrained on a paraelastic substrate of square symmetry, the epilayer has rectangular symmetry, and forms domains of two variants. The domain wall energy drives the domains to coarsen. The spontaneous strains induce an elastic field, which drives the domains to refine. The competition between coarsening and refining selects an equilibrium domain size. We model the epilayer-substrate as a nonequilibrium thermodynamic system, evolving by the changes in the elastic displacements and the order parameters. The free energy consists of two parts: the bulk elastic energy, and the excess surface energy. The elastic energy density is taken to be quadratic in the strains. The surface energy density is expanded into a polynomial of the order parameters, the gradients of the order parameters, and the strains. In this expansion, the surface stress is taken to be quadratic in the order parameters. The evolution equations are derived from the free energy variation with respect to the order parameters. The elastic field is determined by superposing the Cerruti solution. Examples of computer simulation are presented.

1.
Lines, M. E., and Glass, A. M., 1977, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford.
2.
Pertsev
,
N. A.
,
Zembilgotov
,
A. G.
, and
Tagantsev
,
A. K.
,
1998
, “
Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films
,”
Phys. Rev. Lett.
,
80
, pp.
1988
1991
.
3.
Suo
,
Z.
,
1998
, “
Stress and Strain in Ferroelectrics
,”
Curr. Opin. Solid State Mater. Sci.
,
3
, pp.
486
489
.
4.
Pompe
,
W.
,
Gong
,
X.
,
Suo
,
Z.
, and
Speck
,
J. S.
,
1993
, “
Elastic Energy Release due to Domain Formation in the Strained Epitaxy of Ferroelectric and Ferroelastic Films
,”
J. Appl. Phys.
,
74
, pp.
6012
6019
.
5.
Speck
,
J. S.
, and
Pompe
,
W.
,
1994
, “
Domain Configurations due to Multiple Misfit Relaxation Mechanisms in Epitaxial Ferroelastic Thin Films: I Theory
,”
J. Appl. Phys.
,
76
, pp.
466
476
.
6.
Kwak
,
B. S.
, and
Erbil
,
A.
,
1992
, “
Strain Relaxation by Domain Formation in Epitaxial Ferroelectric Thin Films
,”
Phys. Rev. Lett.
,
68
, pp.
3733
3736
.
7.
Sridhar
,
N.
,
Rickman
,
J. M.
, and
Srolovitz
,
D. J.
,
1996
, “
Twinning in Thin Films—I. Elastic Analysis
,”
Acta Mater.
,
44
, pp.
4085
4096
.
8.
Sridhar
,
N.
,
Rickman
,
J. M.
, and
Srolovitz
,
D. J.
,
1996
, “
Twinning in Thin Films—II, Equilibrium Microstructures
,”
Acta Mater.
,
44
, pp.
4097
4113
.
9.
Seul
,
M.
, and
Andelman
,
D.
,
1995
, “
Domain Shapes and Patterns—The Phenomenology of Modulated Phases
,”
Science
,
267
, pp.
476
483
.
10.
Ibach
,
H.
,
1997
, “
The Role of Surface Stress in Reconstruction, Epitaxial Growth and Stabilization of Mesoscopic Structures
,”
Surf. Sci. Rep.
,
29
, pp.
193
263
.
11.
Alerhand
,
O. L.
,
Vanderbilt
,
D.
,
Meade
,
R. D.
, and
Joannopoulos
,
J. D.
,
1988
, “
Spontaneous Formation of Stress Domains on Crystal Surfaces
,”
Phys. Rev. Lett.
,
61
, pp.
1973
1976
.
12.
Lu
,
W.
, and
Suo
,
Z.
,
1999
, “
Coarsening, Refining, and Pattern Emergence in Binary Epilayers
,”
Z. Metallkd.
,
90
, pp.
956
960
.
13.
Lu
,
W.
, and
Suo
,
Z.
,
2001
, “
Dynamics of Nanoscale Pattern Formation of an Epitaxial Monolayer
,”
J. Mech. Phys. Solids
,
49
, pp.
1937
1950
.
14.
Suo
,
Z.
, and
Lu
,
W.
,
2000
, “
Composition Modulation and Nanophase Separation in a Binary Epilayer
,”
J. Mech. Phys. Solids
,
48
, pp.
211
232
.
15.
Cao
,
W.
, and
Cross
,
L. E.
,
1991
, “
Theory of Tetragonal Twin Structures in Ferroelectric Perovskites With a First-Order Phase Transition
,”
Phys. Rev. B
,
44
, pp.
5
12
.
16.
Hu
,
H.-L.
, and
Chen
,
L.-Q.
,
1998
, “
Three-Dimensional Computer Simulation of Ferroelectric Domain Formation
,”
J. Am. Ceram. Soc.
,
81
, pp.
492
500
.
17.
Nambu
,
S.
, and
Sagala
,
D. A.
,
1994
, “
Domain Formation and Elastic Long-Range Interaction in Ferroelectric Perovkites
,”
Phys. Rev. B
,
50
, pp.
5838
5847
.
18.
Cao
,
W. W.
, and
Randall
,
C. A.
,
1996
, “
Grain Size and Domain Size Relations in Bulk Ceramic Ferroelectric Materials
,”
J. Phys. Chem. Solids
,
57
, pp.
1499
1505
.
19.
Randall
,
C. A.
,
Kim
,
N.
,
Kucera
,
J. P.
,
Cao
,
W. W.
, and
Shrout
,
T. R.
,
1998
, “
Intrinsic and Extrinsic Size Effects in Fine-Grained Morphotoropic-Phase Boundary Lead Zirconate Titanate Ceramics
,”
J. Am. Ceram. Soc.
,
81
, pp.
677
688
.
20.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK, p. 69.
You do not currently have access to this content.