The extended Bouc-Wen differential model is one of the most widely accepted phenomenological models of hysteresis in mechanics. It is routinely used in the characterization of nonlinear damping and in system identification. In this paper, the differential model of hysteresis is carefully reexamined and two significant issues are uncovered. First, it is shown that the unspecified parameters of the model are functionally redundant. One of the parameters can be eliminated through suitable transformations in the parameter space. Second, local and global sensitivity analyses are conducted to assess the relative sensitivity of each model parameter. Through extensive Monte Carlo simulations, it is found that some parameters of the hysteretic model are rather insensitive. If the values of these insensitive parameters are fixed, a greatly simplified model is obtained.

1.
Bouc, R., 1967, “Forced Vibration of Mechanical Systems With Hysteresis,” Proceedings of the 4th Conference on Nonlinear Oscillations, Prague, Czechoslovakia, p. 315.
2.
Wen
,
Y. K.
,
1976
, “
Method for Random Vibration of Hysteretic Systems
,”
J. Eng. Mech.
,
102
, pp.
249
263
.
3.
Baber
,
T. T.
, and
Wen
,
Y. K.
,
1981
, “
Random Vibration of Hysteretic Degrading Systems
,”
J. Eng. Mech.
,
107
, pp.
1069
1087
.
4.
Baber
,
T. T.
, and
Noori
,
M. N.
,
1986
, “
Modeling General Hysteresis Behavior and Random Vibration Application
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
108
, pp.
411
420
.
5.
Foliente
,
G. C.
,
1995
, “
Hysteretic Modeling of Wood Joints and Structural Systems
,”
J. Struct. Div. ASCE
,
121
, pp.
1013
1022
.
6.
Loh
,
C. H.
, and
Chung
,
S. T.
,
1993
, “
A Three-Stage Identification Approach for Hysteretic Systems
,”
Earthquake Eng. Struct. Dyn.
,
22
, pp.
129
150
.
7.
Kyprianou
,
A.
,
Worden
,
K.
, and
Panet
,
M.
,
2001
, “
Identification of Hysteretic Systems Using the Differential Evolution Algorithm
,”
J. Sound Vib.
,
248
, pp.
289
314
.
8.
Zhang
,
H.
,
Foliente
,
G. C.
,
Yang
,
Y.
, and
Ma
,
F.
,
2002
, “
Parameter Identification of Inelastic Structures Under Dynamic Loads
,”
Earthquake Eng. Struct. Dyn.
,
31
, pp.
1113
1130
.
9.
Ni
,
Y. Q.
,
Ko
,
J. M.
, and
Wong
,
C. W.
,
1998
, “
Identification of Nonlinear Hysteretic Isolators From Periodic Vibration Tests
,”
J. Sound Vib.
,
217
, pp.
737
756
.
10.
Wong
,
C. W.
,
Ni
,
Y. Q.
, and
Lau
,
S. L.
,
1992
, “
Steady-State Oscillation of Hysteretic Differential Model II: Performance Analysis
,”
J. Eng. Mech.
,
120
, pp.
2299
2325
.
11.
Wen
,
Y. K.
,
1980
, “
Equivalent Linearization for Hysteretic Systems Under Random Excitation
,”
ASME J. Appl. Mech.
,
47
, pp.
150
154
.
12.
Roberts, J. B., and Spanos, P. D., 1990, Random Vibration and Statistical Linearization, John Wiley and Sons, New York, pp. 257–284.
13.
Hamby
,
D. M.
,
1994
, “
A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models
,”
Environ. Monitor. Assess.
,
32
, pp.
135
154
.
14.
Iman
,
R. L.
, and
Helton
,
J. C.
,
1991
, “
The Repeatability of Uncertainty and Sensitivity Analyses for Complex Probabilistic Risk Assessments
,”
Risk Anal
,
11
, pp.
591
606
.
15.
Sobol
,
I. M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Model
,”
Mathematical Modeling and Computational Experiment
,
1
, pp.
407
414
.
16.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1988, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, UK, pp. 237–241.
17.
Sobol
,
I. M.
,
1990
, “
Quasi-Monte-Carlo Methods
,”
Prog. Nucl. Energy
,
24
, pp.
55
61
.
18.
Hammersley
,
J. M.
, and
Morton
,
K. W.
,
1956
, “
A New Monte Carlo Technique: Antithetic Variates
,”
Proc. Cambridge Philos. Soc.
,
52
, pp.
449
475
.
19.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
, pp.
239
245
.
20.
Homma
,
T.
, and
Saltelli
,
A.
,
1996
, “
Importance Measures in Global Sensitivity Analysis of Nonlinear Models
,”
Reliability Eng. Sys. Safety
,
52
, pp.
1
17
.
21.
Iman
,
R. L.
, and
Hora
,
S. C.
,
1990
, “
A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis
,”
Risk Anal
,
10
, pp.
401
406
.
22.
Chan, K., Tarantola, S., Saltelli A., and Sobol, I. M., 2000, “Variance-Based Methods,” Sensitivity Analysis, A. Saltelli, K. Chan, and E. M. Scott, eds., John Wiley and Sons, New York, pp. 167–197.
23.
Saltelli
,
A.
, and
Bolado
,
R.
,
1998
, “
An Alternative Way to Compute Fourier Amplitude Sensitivity Test (FAST)
,”
Comput. Stat. Data Anal.
,
26
, pp.
445
460
.
You do not currently have access to this content.