This paper is devoted to the homogenization of a nonlinear one-dimensional problem as a particular case of laminated composite and its solution by a Wavelet-Galerkin method. This approach is an extension of this method to nonlinear problems. Theoretical results are given and numerical examples are presented.

1.
Léné
,
F.
, 1984, “
Contribution L’étude des Matériaux Composites et a leur Endommagement
,” Ph.D. thesis, Pierre et Marie Curie University.
2.
Moulinec
,
H.
, and
Suquet
,
P.
, 1994, “
A Fast Numerical Method for Computing the Linear and Non Linear Mechanical Properties of Composites
,”
C. R. Acad. Sci. III
0764-4469,
318
, pp.
1417
1423
.
3.
Dumont
,
S.
, and
Lebon
,
F.
, 1996, “
Representation of Plane Elastostatics Operators in Daubechies Wavelets
,”
Comput. Struct.
0045-7949,
60
, pp.
561
569
.
4.
Pobedria
B. E.
, 1984,
Mechanics of Composite Materials
, 1st ed.,
Moscow State University Press
, Moscow (in Russian).
5.
Bachvalov
,
N. S.
, and
Panasenko
,
G. P.
, 1989,
Homogenization of Processes in Periodic Media
,
Kluwer
, Dordrecht.
6.
Dumont
,
S.
, and
Lebon
,
F.
, 1996, “
Wavelet-Galerkin Method for Heterogeneous Media
,”
Comput. Struct.
0045-7949,
61
, pp.
55
65
.
7.
Daubechies
,
I.
, 1992, “
Orthonormal Bases of Compactly Supported Wavelets
,”
Commun. Pure Appl. Math.
0010-3640,
41
, pp.
909
998
.
8.
Alart
,
P.
, and
Lebon
,
F.
, 1995, “
Solution of Frictional Contact Problems Using ILU and Coarse/Fine Preconditioners
,”
Comput. Mech.
0178-7675,
16
, pp.
98
105
.
You do not currently have access to this content.