The transient response of a finite bimaterial plate with a crack perpendicular to and terminating at the interface is analyzed for two types of boundaries (free-free and clamped-clamped). The crack surface is loaded by arbitrary time-dependent antiplane shear impact. The mixed initial-boundary value problem is reduced to a singular integral equation of a generalized Cauchy kernel for the crack tearing displacement density or screw dislocation density. The Gauss-Jacobi quadrature technique is employed to numerically solve the singular integral equation, and then the dynamic stress intensity factors are determined by implementing a numerical inversion of the Laplace transform. As an example, numerical calculations are carried out for a cracked bimaterial plate composed of aluminum (material I) and epoxy or steel (material II). The effects of material properties, geometry, and boundary types on the variations of dynamic stress intensity factors are discussed in detail. Results indicate that an overshoot of the normalized stress intensity factor of the crack tip at the interface decreases for a cracked bimaterial plate, and the occurrence of which is delayed for a cracked aluminum/epoxy plate compared to a pure aluminum plate with the same crack.

1.
Xu
,
L. R.
, and
Rosakis
,
A. J.
, 2002, “
Impact Failure Characteristics in Sandwich Structures; Part II: Effects of Impact Speed and Interfacial Strength
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
4237
4248
.
2.
Xu
,
L. R.
,
Huang
,
Y. Y.
, and
Rosakis
,
A. J.
, 2003, “
Dynamic Crack Deflection and Penetration at Interfaces in Homogeneous Materials: Experimental Studies and Model Predictions
,”
J. Mech. Phys. Solids
0022-5096,
51
, pp.
461
486
.
3.
Hutchinson
,
J. W.
, and
Suo
,
Z.
, 1992, “
Mixed Mode Cracking in Layered Materials
,”
Adv. Appl. Mech.
0065-2156,
29
, pp.
63
191
.
4.
Stone
,
S. F.
,
Ghosh
,
M. L.
, and
Mal
,
A. K.
, 1980, “
Diffraction of Antiplane Shear-Waves by an Edge Crack
,”
J. Appl. Mech.
0021-8936,
47
, pp.
359
362
.
5.
Kuo
,
A. -Y.
, 1984, “
Transient Stress Intensity Factors of an Interfacial Crack between Two Dissimilar Anisotropic Half-Spaces. Part 1: Orthotropic Materials
,”
J. Appl. Mech.
0021-8936,
51
, pp.
71
76
.
6.
Kuo
,
A. -Y.
, 1984, “
Transient Stress Intensity Factors of an Interfacial Crack between Two Dissimilar Anisotropic Half-Spaces. Part 2: Fully Anisotropic Materials
,”
J. Appl. Mech.
0021-8936,
51
, pp.
780
786
.
7.
Ang
,
W. T.
, 1988, “
A Crack in an Anisotropic Layered Material Under the Action of Impact Loading
,”
J. Appl. Mech.
0021-8936,
55
, pp.
120
125
.
8.
Karim
,
M. R.
, and
Kundu
,
T.
, 1988, “
Transient Surface Response of Layered Isotropic and Anisotropic Half-Spaces with Interface Cracks: SH Case
,”
Int. J. Fract.
0376-9429,
37
, pp.
245
262
.
9.
Bostrom
,
A.
, 1987, “
Elastic Wave Scattering from an Interface Crack–Antiplane Strain
,”
J. Appl. Mech.
0021-8936,
54
, pp.
503
508
.
10.
Liu
,
G. R.
, and
Achenbach
,
J. D.
, 1995, “
Strip Element Method to Analyze Wave Scattering by Cracks in Anisotropic Laminated Plates
,”
J. Appl. Mech.
0021-8936,
62
, pp.
607
713
.
11.
Kuo
,
M. K.
, and
Cheng
,
S. H.
, 1991, “
Elastodynamic Response due to Antiplane Point Impact Loadings on the Faces of an Interface Crack along Dissimilar Anisotropic Materials
,”
Int. J. Solids Struct.
0020-7683,
28
, pp.
751
768
.
12.
Pramanik
,
R. K.
,
Pal
,
S. C.
, and
Ghosh
,
M. L.
, 1998, “
Transient Response due to a Pair of Antiplane Point Impact Loading on the Faces of a Finite Griffith Crack at the Bimaterial Interface of Anisotropic Solids
,”
Int. J. Eng. Sci.
0020-7225,
36
, pp.
1197
1213
.
13.
Ing
,
Y. S.
, and
Ma
,
C. C.
, 1997, “
Transient Analysis of a Subsonic Propagating Interface Crack Subjected to Antiplane Dynamic Loading in Dissimilar Isotropic Materials
,”
J. Appl. Mech.
0021-8936,
64
, pp.
546
556
.
14.
Chung
,
Y. L.
, and
Robinson
,
A. R.
, 1992. “
The Transient Problem of a Mode-III Interface Crack
,”
Eng. Fract. Mech.
0013-7944,
41
, pp.
321
330
.
15.
Zhang
,
Ch.
, 1991, “
Dynamic Stress Intensity Factors for Periodically Spaced Collinear Antiplane Shear Cracks between Dissimilar Media
,”
Theor. Appl. Fract. Mech.
0167-8442,
15
, pp.
219
227
.
16.
Wang
,
Y. S.
, and
Gross
,
D.
, 2001, “
Transfer Matrix Method of Wave Propagation in a Layered Medium with Multiple Interface Cracks: Antiplane Case
,”
J. Appl. Mech.
0021-8936,
68
, pp.
499
503
.
17.
Leedy
,
K. D.
, and
Stubbins
,
J. F.
, 2001, “
Copper Alloy–Stainless Steel Bonded Laminates for Fusion Reactor Applications: Crack Growth and Fatigue
,”
Mater. Sci. Eng., A
0921-5093,
297
, pp.
19
25
.
18.
Schlichtinga
,
K. W.
,
Padture
,
N. P.
,
Jordanb
,
E. H.
, and
Gell
,
M.
, 2003, “
Failure Modes in Plasma-Sprayed Thermal Barrier Coatings
,”
Mater. Sci. Eng., A
0921-5093,
342
, pp.
120
130
.
19.
Erdogan
,
F.
, and
Cook
,
T. S.
, 1974, “
Antiplane Shear Crack Terminating at and Going Through a Bimaterial Interface
,”
Int. J. Fract.
0376-9429,
10
, pp.
227
240
.
20.
Bassani
,
J. L.
, and
Erdogan
,
F.
, 1979, “
Stress Intensity Factors in Bonded Half Planes Containing Inclined Cracks and Subjected to Antiplane Shear Loading
,”
Int. J. Fract.
0376-9429,
15
, pp.
145
148
.
21.
Ma
,
C. C.
, and
Hour
,
B. L.
, 1990, “
Antiplane Problems in Composite Anisotropic Materials with an Inclined Crack Terminating at a Bimaterial Interface
,”
Int. J. Solids Struct.
0020-7683,
26
, pp.
1387
1400
.
22.
Lu
,
J. -F.
, and
Hanyga
,
A.
, 2004, “
Scattering of SH Wave by a Crack Terminating at the Interface
,”
Comput. Mech.
0178-7675,
34
, pp.
75
84
.
23.
Wu
,
K. C.
, and
Chiu
,
Y. T.
, 1991, “
Antiplane Shear Interface Cracks in Anisotropic Bimaterials
,”
J. Appl. Mech.
0021-8936,
58
, pp.
399
403
.
24.
Chen
,
W. -H.
,
Chang
,
C. -L.
, and
Tsai
,
C. -H.
, 2000, “
Elastodynamic Fracture Analysis of Multiple Cracks by Laplace Finite Element Alternating Method
,”
J. Appl. Mech.
0021-8936,
67
, pp.
606
615
.
25.
Freund
,
L. B.
, 1990,
Dynamic Fracture Mechanics
,
Cambridge University Press
, Cambridge.
26.
Sneddon
,
I. N.
, 1951,
Fourier Transforms
,
McGraw-Hill
, New York.
27.
Gradshteyn
,
I. S.
, and
Ryzhik
,
I. M.
, 1980,
Table of Integrals, Series and Products
,
Academic
, New York.
28.
Erdogan
,
F.
, 1978, “
Mixed Boundary-Value Problems in Mechanics
,”
Mech. Today
,
4
, pp.
1
86
.
29.
Muskhelishvili
,
N. I.
, 1953,
Singular Integral Equations
,
Noordhoff
, Groningen, The Netherlands.
30.
Elliott
,
D.
, and
Paget
,
D. F.
, 1979, “
Gauss Type Quadrature Rules for Cauchy Principal Value Integrals
,”
Math. Comput.
0025-5718,
33
, pp.
301
309
.
31.
Ghizzetti
,
A.
, and
Ossicini
,
A.
, 1970,
Quadrature Formulae
,
Academic
, New York.
32.
Govorukha
,
V. B.
, and
Loboda
,
V. V.
, 1996, “
On a Numerical Method of the Solution of Singular Integral Equations
,”
ZAMM
,
76
, pp.
541
542
.
33.
Erdelyi
,
A.
,
Magnus
,
W.
,
Oberhettinger
,
F.
, and
Tricomi
,
F. G.
eds., 1953,
Higher Transcendental Functions
, Vol.
II
,
McGraw-Hill
, New York.
34.
Chen
,
E. P.
, and
Sih
,
G. C.
, 1977,
Elastodynamic Crack Problems
,
Noordhoff International
, Leyden, The Netherlands.
35.
Crump
,
K. S.
, 1976, “
Numerical Inversion of Laplace Transforms using a Fourier Series Approximation
,”
J. Assoc. Comput. Mach.
0004-5411,
23
, pp.
89
96
.
36.
Li
,
X. -F.
, and
Duan
,
X. Y.
, 2003, “
Comparison of Dynamic Response of a Piezoelectric Ceramic Containing Two Parallel Cracks via Two Methods of Laplace Inversion
,”
Int. J. Fract.
0376-9429,
122
, pp.
L131
L136
.
37.
Matthews
,
F. L.
, and
Rawlings
,
R. D.
, 1994,
Composite Materials: Engineering and Science
,
Chapman & Hall
, London.
38.
Chou
,
T. W.
, 1970, “
Dislocation Pileups and Elastic Cracks at a Bimaterial Interface
,”
Metall. Trans.
0026-086X,
1
, pp.
1245
1248
.
39.
Barsoum
,
R. S.
, 1988, “
Application of the Finite Element Iterative Method to the Eigenvalue Problem of a Crack between Dissimilar Media
,”
Int. J. Numer. Methods Eng.
0029-5981,
26
, pp.
541
554
.
40.
Achenbach
,
J. D.
, 1970, “
Brittle and Ductile Extension of a Finite Crack by a Horizontally Polarized Shear Wave
,”
Int. J. Eng. Sci.
0020-7225,
8
, pp.
947
966
.
You do not currently have access to this content.