A multidomain topology optimization technique (MDTO) is developed, which extends the standard topology optimization method to the realm of more realistic engineering design problems. The new technique enables the effective design of a complex engineering structure by allowing the designer to control the material distribution among the subdomains during the optimal design process, to use multiple materials or composite materials in the various subdomains of the structure, and to follow a desired pattern or tendency for the material distribution. A new algorithm of Sequential Approximate Optimization (SAO) is proposed for the multidomain topology optimization, which is an enhancement and a generalization of previous SAO algorithms (including Optimality Criteria and Convex Linearization methods, etc.). An advanced substructuring method using quasi-static modes is also introduced to condense the nodal variables associated with the multidomain topology optimization problem, especially for the nondesign subdomains. The effectiveness of the new MDTO approach is demonstrated for various design problems, including one of “structure-fixture simultaneous design,” one of “functionally graded material design,” and one of “crush energy management.” These case studies demonstrate the potential significance of the new capability developed for a wide range of engineering design problems.

1.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Sigmund
,
O.
, 1994, “
Topology Optimization in Structural Design
,” in
Advances in Design Optimization
,
H.
Adeli
, ed.,
Chapman and Hall
,
London, UK
, pp.
340
399
.
2.
Bendsøe
,
M. P.
,
Diaz
,
A.
, and
Kikuchi
,
N.
, 1992, “
Topology and Generalized Layout Optimization of Elastic Structures
,”
Topology Design of Structures
,
Bendsøe
,
M. P.
and
Soates
,
C. A. M.
, eds.,
NATO ASI Series
,
Kluwer Academic
,
Dordrecht
, pp.
159
205
.
3.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape, and Material
,
Springer-Verlag
,
Berlin
.
4.
Hassani
,
B.
, and
Hinton
,
E.
, 1999,
Homogenization and Structural Topology Optimization: Theory, Practice, and Software
,
Springer-Verlag
,
Berlin
.
5.
Bendsøe
,
M. P.
, 2003,
Topology Optimization: Theory, Methods and Applications
,
Springer-Verlag
,
Berlin, Heidelberg
.
6.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
, pp.
197
24
.
7.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
, pp.
291
318
.
8.
Kikuchi
,
N.
,
Suzuki
,
K.
, and
Fukushima
,
J.
, 1991, “
Layout Optimization Using the Homogenization Method: Generalized Layout Design of Three-Dimensional Shells for Car Bodies
,”
Optimization of Large Structural Systems
,
G. I. N.
Rozvany
, ed.,
NATO-ASI Series
,
Berchtesgaden
, Vol.
3
, pp.
110
126
.
9.
Kikuchi
,
N.
,
Nishiwaki
,
S.
,
Fonseca
,
J. O.
, and
Silva
,
E. C. N.
, 1998, “
Design Optimization Method for Compliant Mechanisms and Material Microstructure
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
151
, pp.
401
417
.
10.
Nishiwaki
,
S.
,
Frecker
,
M.
,
Min
,
S. J.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
, pp.
535
559
.
11.
Fecker
,
M.
,
Ananthasuresh
,
G. K.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
2
), pp.
238
245
.
12.
Diaz
,
A.
, and
Kikuchi
,
N.
, 1992, “
Solutions to Shape and Topology Eigenvalue Optimization Problems Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
1487
1502
.
13.
Ma
,
Z.-D.
,
Kikuchi
,
N.
,
Cheng
,
H.-C.
, and
Hagiwara
,
I.
, 1994, “
Structural Design for Obtaining Desired Frequencies by Using the Topology and Shape Optimization Method
,”
Comput. Syst. Eng.
0956-0521,
5
(
1
), pp.
77
89
.
14.
Ma
,
Z.-D.
,
Kikuchi
,
N.
,
Cheng
,
H.-C.
, and
Hagiwara
,
I.
, 1995, “
Topological Optimization Technique for Free Vibration Problems
,”
ASME J. Appl. Mech.
0021-8936,
62
, pp.
200
207
.
15.
Cheng
,
H.-C.
,
Kikuchi
,
N.
, and
Ma
,
Z.-D.
, 1994, “
Generalized Shape∕Topology Designs of Plate∕Shell Structures for Eigenvalue Optimization Problems
,”
Proceedings of ASME International Mechanical Engineering Congress and Exposition
, PED-Vol.
68-2
, pp.
483
492
.
16.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Hagiwara
,
I.
, 1993, “
Structural Topology and Shape Optimization for a Frequency Response Problem
,”
Comput. Mech.
0178-7675,
13
(
3
), pp.
157
174
.
17.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
, 1995, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
, pp.
259
280
.
18.
Ma
,
Z.-D.
, and
Kikuchi
,
N.
, 1995, “
A New Method of the Sequential Approximate Optimization
,”
Eng. Optimiz.
0305-215X,
25
, pp.
231
253
.
19.
Shyu
,
W.-H.
,
Ma
,
Z.-D.
, and
Hulbert
,
G. M.
, 1997, “
A New Component Mode Synthesis Method: Quasi-Static Mode Compensation
,”
Finite Elem. Anal. Design
0168-874X,
24
, pp.
271
281
.
20.
Berke
,
L.
, and
Khot
,
N. S.
, 1987, “
Structural Optimization Using Optimality Criteria
,”
Computer Aided Optimal Design: Structural and Mechanical Systems
,
C. A.
Mota Soares
, ed.,
Springer-Verlag
,
Berlin
, pp.
271
311
.
21.
Fleury
,
C.
, and
Braibant
,
V.
, 1986, “
Structural Optimization: a New Dual Method Using Mixed Variables
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
, pp.
409
428
.
22.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes: A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
359
373
.
23.
Fleury
,
C.
, 1987, “
Efficient Approximation Concepts Using Second Order Information
,”
Int. J. Numer. Methods Eng.
0029-5981,
28
, pp.
2041
2058
.
24.
Ma
,
Z.-D.
, and
Hagiwara
,
I.
, 1991, “
Improved Mode-Superposition Technique for Modal Frequency Response Analysis of Coupled Acoustic-Structural Systems
,”
AIAA J.
0001-1452,
29
(
10
), pp.
1720
1726
.
25.
Shyu
,
W.-H.
,
Gu
,
J.
,
Hulbert
,
G. M.
, and
Ma
,
Z.-D.
, 2000, “
On the Use of Multiple Quasi-Static Mode Compensation Sets for Component Mode Synthesis of Complex Structures
,”
Finite Elem. Anal. Design
0168-874X,
35
, pp.
119
140
.
26.
Hurty
,
W. C.
, 1965, “
Dynamic Analysis of Structural Systems Using Component Modes
,”
AIAA J.
0001-1452,
3
, pp.
678
685
.
27.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
, 1968, “
Coupling of Substructures for Dynamic Analysis
,”
AIAA J.
0001-1452,
6
, pp.
1313
1319
.
28.
Cherradi
,
N.
,
Kawasaki
,
A.
, and
Gasik
,
M.
, 1994, “
World Trends in Functional Gradient Materials Research and Development
,”
Composites Eng.
0961-9526,
4
(
8
), pp.
883
894
.
29.
Wojciechowski
,
S.
, 2000, “
New Trends in the Development of Mechanical Engineering Materials
,”
J. Mater. Process. Technol.
0924-0136,
106
, pp.
230
235
.
30.
Chickermane
,
H.
, and
Gea
,
H. C.
, 1997, “
Design of Multi-Component Structural Systems for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
0264-4401,
13
, pp.
235
243
.
31.
Thomas
,
Buhl
, 2002, “
Simultaneous Topology Optimization of Structure and Supports
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
5
), pp.
336
346
.
32.
Ma
,
Z.-D.
, 2001, “
Topology Optimization with Multiple Domains
,”
oral presentation at the 6th U.S. National Congress on Computational Mechanics
, Dearborn, Michigan, August, 2001.
You do not currently have access to this content.