This paper applies the variational multiscale theory to develop an explicit a posteriori error estimator for quantities of interest and linear functionals of the solution. The method is an extension of a previous work on global and local error estimates for solutions computed with stabilized methods. The technique is based on approximating an exact representation of the error formulated as a function of the fine-scale Green function. Numerical examples for the multidimensional transport equation confirm that the method can provide good local error estimates of quantities of interest both in the diffusive and the advective limit.
Topics:
Errors
1.
Ainsworth
, M.
, and Oden
, J. T.
, 2000, A Posterior Error Estimation in Finite Element Analysis
, Wiley
, New York
.2.
Bangerth
, W.
, and Rannacher
, R.
, 2003, Adaptive Finite Element Methods for Differential Equations
, Birkhäuser
, Basel
.3.
Pares
, N.
, Diez
, P.
, and Huerta
, A.
, 2006, “Subdomain-Based Flux-Free A Posteriori Error Estimators
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 297
–323
. 0045-78254.
Prudhomme
, S.
, and Oden
, J. T.
, 1999, “On Goal-Oriented Error Estimation for Elliptic Problems: Application to the Control of Pointwise Errors
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 176
, pp. 313
–331
.5.
Paraschivoiu
, M.
, Peraire
, J.
, and Patera
, A. T.
, 1997, “A Posteriori Finite Element Bounds for Linear-Functional Outputs of Elliptic Partial Differential Equations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 150
, pp. 289
–312
.6.
Peraire
, J.
, and Patera
, A. T.
, 1999, “Asymptotic A Posteriori Finite Element Bounds for the Outputs of Noncoercive Problems: The Helmholtz and Burgers Equations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 171
, pp. 77
–86
.7.
Houston
, P.
, Rannacher
, R.
, and Süli
, E.
, 2000, “A Posteriori Error Analysis for Stabilized Finite Element Approximations of Transport Problem
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 190
, pp. 1483
–1508
.8.
Rannacher
, R.
, 1998, “A Posteriori Error Estimation in Least-Squares Stabilized Finite Element Schemes
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 166
, pp. 99
–114
.9.
Hughes
, T. J. R.
, 1995, “Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 127
, pp. 387
–401
.10.
Hughes
, T. J. R.
, Feijoo
, G. R.
, Mazzei
, L.
, and Quincy
, J. B.
, 1998, “The Variational Multiscale Method: A Paradigm for Computational Mechanics
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 166
, pp. 3
–24
.11.
Larson
, M. G.
, and Målqvist
, A.
, 2007, “Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems
,” Comput. Methods Appl. Mech. Eng.
, 196
, pp. 2313
–2324
. 0045-782512.
Hauke
, G.
, Doweidar
, M. H.
, and Miana
, M.
, 2006, “The Multiscale Approach to Error Estimation and Adaptivity
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 1573
–1593
. 0045-782513.
Hauke
, G.
, and Doweidar
, M. H.
, 2006, “Intrinsic Scales and A Posteriori Multiscale Error Estimation for Piecewise-Linear Functions and Residuals
,” Int. J. Comput. Fluid Dyn.
, 20
, pp. 211
–222
. 1061-856214.
Hauke
, G.
, Doweidar
, M. H.
, and Miana
, M.
, 2006, “Proper Intrinsic Scales for A-Posteriori Multiscale Error Estimation
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 3983
–4001
. 0045-782515.
Hauke
, G.
, Doweidar
, M. H.
, Fuster
, D.
, Gomez
, A.
, and Sayas
, J.
, 2006, “Application of Variational A-Posteriori Multiscale Error Estimation to Higher-Order Elements
,” Comput. Mech.
, 38
, pp. 382
–389
. 0178-767516.
Hauke
, G.
, Fuster
, D.
, and Doweidar
, M. H.
, 2008, “Variational Multiscale A-Posteriori Error Estimation for Multi-Dimensional Transport Problems
,” Comput. Methods Appl. Mech. Eng.
, 197
, pp. 2701
–2718
. 0045-782517.
Brooks
, A. N.
, and Hughes
, T. J. R.
, 1982, “Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 32
, pp. 199
–259
.18.
Franca
, L. P.
, Frey
, S. L.
, and Hughes
, T. J. R.
, 1992, “Stabilized Finite Element Methods: I. Application to the Advective-Diffusive Model
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 95
, pp. 253
–276
.19.
Franca
, L. P.
, Hauke
, G.
, and Masud
, A.
, 2006, “Revisiting Stabilized Finite Element Methods for the Advective-Diffusive Equation
,” Comput. Methods Appl. Mech. Eng.
, 195
, pp. 1560
–1572
. 0045-782520.
Hughes
, T. J. R.
, and Sangalli
, G.
, 2007, “Variational Multiscale Analysis: The Fine-Scale Green’s Function, Projection, Optimization, Localization and Stabilized Methods
,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429, 45
(2
), pp. 539
–557
.21.
Hughes
, T. J. R.
, 2000, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
, Dover
, New York
.22.
Brezzi
, F.
, Bristeau
, M. O.
, Franca
, L. P.
, Mallet
, M.
, and Rogé
, G.
, 1992, “A Relationship Between Stabilized Finite Element Methods and the Galerkin Method With Bubble Functions
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 96
, pp. 117
–129
.23.
Brezzi
, F.
, Franca
, L. P.
, Hughes
, T. J. R.
, and Russo
, A.
, 1997, “b=∫g
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 145
, pp. 329
–339
.24.
Brezzi
, F.
, and Russo
, A.
, 1994, “Choosing Bubbles for Advection-Diffusion Problems
,” Math. Models Meth. Appl. Sci.
0218-2025, 4
, pp. 571
–587
.25.
Franca
, L. P.
, and Russo
, A.
, 1996, “Deriving Upwinding, Mass Lumping and Selective Reduced Integration by Residual-Free Bubbles
,” Appl. Math. Lett.
0893-9659, 9
, pp. 83
–88
.26.
Brenner
, S. C.
, and Scott
, L. R.
, 2002, The Mathematical Theory of Finite Element Methods
, Springer-Verlag
, New York
.27.
Franca
, L. P.
, and Valentin
, F.
, 2000, “On an Improved Unusual Stabilized Finite Element Method for the Advective-Reactive-Diffusive Equation
,” Comput. Methods Appl. Mech. Eng.
0045-7825, 190
, pp. 1785
–1800
.28.
Hauke
, G.
, 2002, “A Simple Stabilized Method for the Advection-Diffusion-Reaction Equation
,” Comput. Methods Appl. Mech. Eng.
, 191
, pp. 2925
–2947
. 0045-782529.
John
, V.
, 2000, “A Numerical Study of A Posteriori Error Estimators for Convection-Diffusion Equations
,” Comput. Methods Appl. Mech. Eng.
, 190
, pp. 757
–781
. 0045-7825Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.