This paper applies the variational multiscale theory to develop an explicit a posteriori error estimator for quantities of interest and linear functionals of the solution. The method is an extension of a previous work on global and local error estimates for solutions computed with stabilized methods. The technique is based on approximating an exact representation of the error formulated as a function of the fine-scale Green function. Numerical examples for the multidimensional transport equation confirm that the method can provide good local error estimates of quantities of interest both in the diffusive and the advective limit.

1.
Ainsworth
,
M.
, and
Oden
,
J. T.
, 2000,
A Posterior Error Estimation in Finite Element Analysis
,
Wiley
,
New York
.
2.
Bangerth
,
W.
, and
Rannacher
,
R.
, 2003,
Adaptive Finite Element Methods for Differential Equations
,
Birkhäuser
,
Basel
.
3.
Pares
,
N.
,
Diez
,
P.
, and
Huerta
,
A.
, 2006, “
Subdomain-Based Flux-Free A Posteriori Error Estimators
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
297
323
. 0045-7825
4.
Prudhomme
,
S.
, and
Oden
,
J. T.
, 1999, “
On Goal-Oriented Error Estimation for Elliptic Problems: Application to the Control of Pointwise Errors
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
176
, pp.
313
331
.
5.
Paraschivoiu
,
M.
,
Peraire
,
J.
, and
Patera
,
A. T.
, 1997, “
A Posteriori Finite Element Bounds for Linear-Functional Outputs of Elliptic Partial Differential Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
150
, pp.
289
312
.
6.
Peraire
,
J.
, and
Patera
,
A. T.
, 1999, “
Asymptotic A Posteriori Finite Element Bounds for the Outputs of Noncoercive Problems: The Helmholtz and Burgers Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
171
, pp.
77
86
.
7.
Houston
,
P.
,
Rannacher
,
R.
, and
Süli
,
E.
, 2000, “
A Posteriori Error Analysis for Stabilized Finite Element Approximations of Transport Problem
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1483
1508
.
8.
Rannacher
,
R.
, 1998, “
A Posteriori Error Estimation in Least-Squares Stabilized Finite Element Schemes
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
166
, pp.
99
114
.
9.
Hughes
,
T. J. R.
, 1995, “
Multiscale Phenomena: Green’s Functions, the Dirichlet-to-Neumann Formulation, Subgrid Scale Models, Bubbles and the Origins of Stabilized Methods
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
127
, pp.
387
401
.
10.
Hughes
,
T. J. R.
,
Feijoo
,
G. R.
,
Mazzei
,
L.
, and
Quincy
,
J. B.
, 1998, “
The Variational Multiscale Method: A Paradigm for Computational Mechanics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
166
, pp.
3
24
.
11.
Larson
,
M. G.
, and
Målqvist
,
A.
, 2007, “
Adaptive Variational Multiscale Methods Based on A Posteriori Error Estimation: Energy Norm Estimates for Elliptic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
196
, pp.
2313
2324
. 0045-7825
12.
Hauke
,
G.
,
Doweidar
,
M. H.
, and
Miana
,
M.
, 2006, “
The Multiscale Approach to Error Estimation and Adaptivity
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
1573
1593
. 0045-7825
13.
Hauke
,
G.
, and
Doweidar
,
M. H.
, 2006, “
Intrinsic Scales and A Posteriori Multiscale Error Estimation for Piecewise-Linear Functions and Residuals
,”
Int. J. Comput. Fluid Dyn.
,
20
, pp.
211
222
. 1061-8562
14.
Hauke
,
G.
,
Doweidar
,
M. H.
, and
Miana
,
M.
, 2006, “
Proper Intrinsic Scales for A-Posteriori Multiscale Error Estimation
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
3983
4001
. 0045-7825
15.
Hauke
,
G.
,
Doweidar
,
M. H.
,
Fuster
,
D.
,
Gomez
,
A.
, and
Sayas
,
J.
, 2006, “
Application of Variational A-Posteriori Multiscale Error Estimation to Higher-Order Elements
,”
Comput. Mech.
,
38
, pp.
382
389
. 0178-7675
16.
Hauke
,
G.
,
Fuster
,
D.
, and
Doweidar
,
M. H.
, 2008, “
Variational Multiscale A-Posteriori Error Estimation for Multi-Dimensional Transport Problems
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
2701
2718
. 0045-7825
17.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
18.
Franca
,
L. P.
,
Frey
,
S. L.
, and
Hughes
,
T. J. R.
, 1992, “
Stabilized Finite Element Methods: I. Application to the Advective-Diffusive Model
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
95
, pp.
253
276
.
19.
Franca
,
L. P.
,
Hauke
,
G.
, and
Masud
,
A.
, 2006, “
Revisiting Stabilized Finite Element Methods for the Advective-Diffusive Equation
,”
Comput. Methods Appl. Mech. Eng.
,
195
, pp.
1560
1572
. 0045-7825
20.
Hughes
,
T. J. R.
, and
Sangalli
,
G.
, 2007, “
Variational Multiscale Analysis: The Fine-Scale Green’s Function, Projection, Optimization, Localization and Stabilized Methods
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
45
(
2
), pp.
539
557
.
21.
Hughes
,
T. J. R.
, 2000,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover
,
New York
.
22.
Brezzi
,
F.
,
Bristeau
,
M. O.
,
Franca
,
L. P.
,
Mallet
,
M.
, and
Rogé
,
G.
, 1992, “
A Relationship Between Stabilized Finite Element Methods and the Galerkin Method With Bubble Functions
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
96
, pp.
117
129
.
23.
Brezzi
,
F.
,
Franca
,
L. P.
,
Hughes
,
T. J. R.
, and
Russo
,
A.
, 1997, “
b=∫g
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
145
, pp.
329
339
.
24.
Brezzi
,
F.
, and
Russo
,
A.
, 1994, “
Choosing Bubbles for Advection-Diffusion Problems
,”
Math. Models Meth. Appl. Sci.
0218-2025,
4
, pp.
571
587
.
25.
Franca
,
L. P.
, and
Russo
,
A.
, 1996, “
Deriving Upwinding, Mass Lumping and Selective Reduced Integration by Residual-Free Bubbles
,”
Appl. Math. Lett.
0893-9659,
9
, pp.
83
88
.
26.
Brenner
,
S. C.
, and
Scott
,
L. R.
, 2002,
The Mathematical Theory of Finite Element Methods
,
Springer-Verlag
,
New York
.
27.
Franca
,
L. P.
, and
Valentin
,
F.
, 2000, “
On an Improved Unusual Stabilized Finite Element Method for the Advective-Reactive-Diffusive Equation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
1785
1800
.
28.
Hauke
,
G.
, 2002, “
A Simple Stabilized Method for the Advection-Diffusion-Reaction Equation
,”
Comput. Methods Appl. Mech. Eng.
,
191
, pp.
2925
2947
. 0045-7825
29.
John
,
V.
, 2000, “
A Numerical Study of A Posteriori Error Estimators for Convection-Diffusion Equations
,”
Comput. Methods Appl. Mech. Eng.
,
190
, pp.
757
781
. 0045-7825
You do not currently have access to this content.