The concept of domain integral used extensively for integral has been applied in this work for the formulation of integral for linear elastic bimaterial body containing a crack at the interface and subjected to thermal loading. It is shown that, in the presence of thermal stresses, the domain integral over a closed path, which does not enclose singularities, is a function of temperature and body force. A method is proposed to compute the stress intensity factors for bimaterial interface crack subjected to thermal loading by combining this domain integral with the integral. The proposed method is validated by solving standard problems with known solutions.
Issue Section:
Research Papers
1.
Irwin
, G. R.
, 1957, “Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,” ASME J. Appl. Mech.
0021-8936, 24
(3
), pp. 361
–364
.2.
Rice
, J. R.
, 1968, “A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,” ASME J. Appl. Mech.
0021-8936, 35
(2
), pp. 379
–386
.3.
Parks
, D. M.
, 1974, “A Stiffness Derivative Finite Element Technique for Determination of Crack Tip Stress Intensity Factors
,” Int. J. Fract.
0376-9429, 10
, pp. 487
–502
4.
Carlsson
, L. A.
, and Prasad
, S.
, 1993, “Interface Fracture of Sandwich Beams
,” Eng. Fract. Mech.
, 44
(4
), pp. 581
–590
. 0013-79445.
Yau
, J. F.
, and Wang
, S. S.
, 1984, “An Analysis of Interface Crack Between Dissimilar Isotropic Materials Using Conservation Integrals in Elasticity
,” Eng. Fract. Mech.
0013-7944, 20
, pp. 423
–432
.6.
Matos
, P. P. L.
, McMeeking
, R. M.
, Charalambides
, P. G.
, and Drory
, M. D.
, 1989, “A Method of Calculating Stress Intensities in Bimaterial Fracture
,” Int. J. Fract.
0376-9429, 40
, pp. 235
–254
.7.
Bank-Sills
, L.
, Travitzky
, N.
, Ashkenazi
, D.
, and Eliasi
, R.
, 1999, “A Methodology for Measuring Interface Fracture Toughness of Composites Materials
,” Int. J. Fract.
0376-9429, 99
, pp. 143
–161
.8.
Miyazaki
, N.
, Ikeda
, T.
, Soda
, T.
, and Munakata
, T.
, 1993, “Stress Intensity Factor Analysis of Interface Crack Using Boundary Element Method—Application of Contour-Integral Method
,” Eng. Fract. Mech.
0013-7944, 45
(5
), pp. 599
–610
.9.
Miyazaki
, N.
, Ikeda
, T.
, Soda
, T.
, and Munakata
, T.
, 1993, “Stress Intensity Factor Analysis of Interface Crack Using Boundary Element Method—Application of Virtual Crack Extension Method
,” JSME Int. J., Ser. A
1340-8046, 36
, pp. 36
–42
.10.
Ryoji
, Y.
, and Sang-Bong
, C.
, 1989, “Efficient Boundary Element Analysis of Stress Intensity Factors for Interface Cracks in Dissimilar Materials
,” Eng. Fract. Mech.
0013-7944, 34
, pp. 179
–188
.11.
Ikeda
, T.
, and Sun
, C. T.
, 2001, “Stress Intensity Factor Analysis for an Interface Crack Between Dissimilar Isotropic Materials Under Thermal Stress
,” Int. J. Fract.
0376-9429, 111
, pp. 229
–249
.12.
Banks-Sills
, L.
, and Dolev
, O.
, 2004, “The Conservative M Integral for Thermal-Elastic Problems
,” Int. J. Fract.
, 125
, pp. 149
–170
. 0376-942913.
Hong
, C. C.
, and Stern
, M.
, 1978, “The Computation of Stress Intensity Factors in Dissimilar Materials
,” J. Elast.
0374-3535, 8
(1
), pp. 21
–36
.14.
Sun
, C. T.
, and Jih
, C. J.
, 1987, “On Strain Energy Release Rates for Interfacial Cracks in Bi-Material Media
,” Eng. Fract. Mech.
0013-7944, 28
, pp. 13
–20
.15.
Wilson
, W. K.
, and Yu
, I. W.
, 1979, “The Use of the J Integral in Thermal Stress Crack Problem
,” Int. J. Fract.
, 15
, pp. 377
–387
. 0376-942916.
Chang
, J. H.
, and Pu
, L. P.
, 1997, “A Finite Element Approach for J2 Calculation in Anisotropic Materials
,” Compos. Struct.
, 62
(4
), pp. 635
–647
. 0263-822317.
Eischen
, J. W.
, 1987, “An Improved Method for Calculating J2 Integral
,” Eng. Fract. Mech.
, 26
(5
), pp. 691
–700
. 0013-794418.
Shih
, C. F.
, Moran
, B.
, and Nakamura
, T.
, 1986, “Energy Release Rate Along Three Dimension Crack Front in a Thermally Stress Body
,” Int. J. Fract.
, 30
, pp. 79
–102
. 0376-942919.
Khandelwal
, R.
, and Chandra Kishen
, J. M.
, 2006, “Complex Variable Method of Computing Jk for Bi-Material Interface Cracks
,” Eng. Fract. Mech.
, 73
, pp. 1568
–1580
. 0013-794420.
Knowles
, J. K.
, and Sternberg
, E.
, 1972, “On a Class of Conservation Laws in Linearilized and Finite Elastostatics
,” Arch. Ration. Mech. Anal.
0003-9527, 44
, pp. 187
–211
.21.
Banks-Sills
, L.
, and Sherman
, D.
, 1992, “On the Computation of Stress Intensity Factors for Three-Dimensional Geometries by Means of the Stiffness Derivative and J-Integral Methods
,” Int. J. Fract.
, 53
, pp. 1
–20
. 0376-942922.
Li
, F. Z.
, Shih
, C. F.
, and Needleman
, A.
, 1985, “A Comparison of Methods for Calculating Energy Release Rates
,” Eng. Fract. Mech.
0013-7944, 21
, pp. 405
–421
.23.
2005, ANSYS, University Advanced, v. 10.0, ANSYS, Inc., Canonsburg, PA.
24.
Erdogan
, F.
, 1965, “Stress Distribution in Bounded Dissimilar Materials With Cracks
,” Trans. ASME, J. Appl. Mech.
, 32
, pp. 403
–410
. 0021-893625.
Brown
, E. J.
, and Erdogan
, F.
, 1968, “Thermal Stress in Bounded Materials Containing Cuts on the Interface
,” Int. J. Fract.
, 6
, pp. 517
–529
. 0376-942926.
Williams
, M. L.
, 1959, “The Stresses Around a Fault or Crack in Dissimilar Media
,” Bull. Seismol. Soc. Am.
, 49
(2
), pp. 199
–204
. 0037-110627.
Rice
, J. R.
, Suo
, Z.
, and Wang
, J. S.
, 1990, Mechanics and Thermodynamics of Brittle Interfacial Failure in Bi-Material Systems
, G. C.
Ruhle
, A. G.
Evans
, M. F.
Ashby
, and J. P.
Hirth
, eds., Pergamon
, New York
.28.
Comninou
, M.
, 1990, “An Overview of Interface Cracks
,” Eng. Fract. Mech.
0013-7944, 37
, pp. 197
–208
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.