A flexible strip is rotated at its ends until it forms a deep circular arc above its ends. Then the ends are kept immovable and are rotated downward until the arch suddenly snaps into an inverted configuration. The strip is analyzed as an inextensible elastica. Two-dimensional equilibrium shapes, vibration modes and frequencies, and critical rotations for snap-through are determined using a shooting method. Experiments are also conducted and results are compared with those from the analysis. The agreement is good. In addition, a microelectromechanical systems (MEMS) example is analyzed, in which an electrostatic force below a buckled strip causes the strip to snap downward, and the critical force is obtained as a function of the vertical gap.

1.
Miao
,
M.
,
Wu
,
G.
,
Jin
,
Y.
,
Zhang
,
J.
, and
Hao
,
Y.
, 2005, “
A Bulk Micromachined MEMS Digital Distributed Phase Shifter Based on Metal-Air-Metal Capacitors Formed by Intrinsic Stress
,”
Int. J. Nonlinear Sci. Numer. Simul.
1565-1339,
6
, pp.
425
430
.
2.
Maurini
,
C.
,
Pouget
,
J.
, and
Vidoli
,
S.
, 2007, “
Distributed Piezoelectric Actuation of a Bistable Buckled Beam
,”
Eur. J. Mech. A/Solids
0997-7538,
26
, pp.
837
853
.
3.
Plaut
,
R. H.
, 1983, “
Optimal Arch Form for Stability Under End Moments
,”
Developments in Mechanics
,
Proceedings of the 18th Midwestern Mechanics Conference
, Iowa City, IA, May 16–18,
J. S.
Arora
,
R. L.
Benedict
,
Y. K.
Liu
, and
V. C.
Patel
, eds., Vol.
12
, pp.
87
89
.
4.
Chen
,
J. -S.
, and
Lin
,
J. -S.
, 2005, “
Exact Critical Loads for a Pinned Half-Sine Arch Under End Couples
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
147
148
.
5.
Plaut
,
R. H.
, 2009, “
Snap-Through of Shallow Elastic Arches Under End Moments
,”
ASME J. Appl. Mech.
0021-8936,
76
, p.
014504
.
6.
Plaut
,
R. H.
,
Taylor
,
R. P.
, and
Dillard
,
D. A.
, 2004, “
Postbuckling and Vibration of a Flexible Strip Clamped at Its Ends to a Hinged Substrate
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
859
870
.
7.
Perkins
,
N. C.
, 1990, “
Planar Vibration of an Elastica Arch: Theory and Experiment
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
374
379
.
8.
Patricio
,
P.
,
Adda-Bedia
,
M.
, and
Ben Amar
,
M.
, 1998, “
An Elastica Problem: Instabilities of an Elastic Arch
,”
Physica D
,
124
, pp.
285
295
. 0167-2789
9.
de Silva, C. W., ed., 2005, Vibration and Shock Handbook,
Taylor & Francis
,
Boca Raton, FL
.
10.
Santillan
,
S. T.
,
Virgin
,
L. N.
, and
Plaut
,
R. H.
, 2006, “
Post-Buckling and Vibration of Heavy Beam on Horizontal or Inclined Rigid Foundation
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
664
671
.
11.
Wolfram
,
S.
, 1996,
The Mathematica Book
, 3rd ed.,
Cambridge University Press
,
Cambridge
.
12.
Wang
,
C. -Y.
, 1981, “
Folding of Elastica—Similarity Solutions
,”
ASME J. Appl. Mech.
,
48
, pp.
199
200
. 0021-8936
13.
Zhang
,
Y.
,
Wang
,
Y.
,
Li
,
Z.
,
Huang
,
Y.
, and
Li
,
D.
, 2007, “
Snap-Through and Pull-In Instabilities of an Arch-Shaped Beam Under an Electrostatic Loading
,”
J. Microelectromech. Syst.
1057-7157,
16
, pp.
684
693
.
14.
Krylov
,
S.
,
Ilic
,
B. R.
,
Schreiber
,
D.
,
Seretensky
,
S.
, and
Craighead
,
H.
, 2008, “
The Pull-In Behavior of Electrostatically Actuated Bistable Microstructures
,”
J. Micromech. Microeng.
0960-1317,
18
, p.
055026
.
15.
Atanackovic
,
T. M.
, 1997,
Stability Theory of Elastic Rods
,
World Scientific
,
Singapore
.
16.
Wasserman
,
Y.
, 1977, “
The Influence of the Behaviour of the Load on the Frequencies and Critical Loads of Arches With Flexibly Supported Ends
,”
J. Sound Vib.
,
54
, pp.
515
526
. 0022-460X
You do not currently have access to this content.