This two-part article presents the results of experimental and numerical work on the crushing characteristics of square tubes, with blast-induced imperfections, subjected to axial load. In Part I, the experimental studies are presented. The approach in the studies involves creating imperfections on opposite sides at midlength of a square tube by means of localized blast loads to create three types of imperfections; nontouching domes, rebound domes, and capped domes. These imperfections change the geometry and the material properties in the midsection of the tubes and hence affect the crushing characteristics. While the blast-induced imperfections enhance the energy absorption characteristics of the tubes they also affect the lobe formation process. In Part II, the finite element package ABAQUS/EXPLICIT v6.5-6 is used to construct a 12 symmetry model by means of shell and continuum elements to simulate the tube response to the localized blast loads followed by dynamic axial loading in the form of a rigid mass impacting at a specified initial velocity. The hydrodynamic code AUTODYN is used to characterize the localized blast pressure time and spatial history. The predictions show satisfactory correlation with experiments for both crushed shapes and crushed distance.

1.
World Health Organization and World Bank
, 2004, “
World Report on Road Traffic Injury Prevention
,”
Prevention
, Geneva.
2.
Pugsley
,
A. G.
, and
Macaulay
,
M.
, 1960, “
The Large Scale Crumpling of Thin Cylindrical Columns
,”
Q. J. Mech. Appl. Math.
0033-5614,
13
(
1
), pp.
1
9
.
3.
Alexander
,
J. M.
, 1960, “
An Approximate Analysis of the Collapse of Thin Cylindrical Columns
,”
Q. J. Mech. Appl. Math.
0033-5614,
13
(
1
), pp.
10
15
.
4.
Reid
,
S. R.
, 1993, “
Plastic Deformation Mechanisms in Axial Compressed Metal Tubes Used as Impact Energy Absorbers
,”
Int. J. Mech. Sci.
0020-7403,
35
(
12
), pp.
1035
1052
.
5.
Alghamdi
,
A. A. A.
, 2001, “
Collapsible Impact Energy Absorbers: an Overview
,”
Thin-Walled Struct.
0263-8231,
39
(
2
), pp.
189
213
.
6.
Jones
,
N.
, 2003, “
Several Phenomena in Structural Impact and Structural Crashworthiness
,”
Eur. J. Mech. A/Solids
0997-7538,
22
(
5
), pp.
693
707
.
7.
Thornton
,
P. H.
, and
Magee
,
C. L.
, 2008, “
The Interplay of Geometric and Materials Variables in Energy Absorption
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
(
2
), pp.
114
120
.
8.
Chung Kim Yuen
,
S.
, and
Nurick
,
G. N.
, 2008, “
The Energy Absorbing Characteristics of Tubular Structures with Geometric and Material Modifications: an Overview
,”
Appl. Mech. Rev.
0003-6900,
61
(
2
), pp.
020802
-1–020802-
15
.
9.
Langseth
,
M.
,
Berstad
,
T.
,
Hopperstad
,
O. S.
, and
Clausen
,
A. H.
, 1994, “
Energy Absorption in Axially Loaded Square Thin-Walled Aluminium Extrusions
,”
Structures Under Shock Impact III (SUSI III)
,
CMP
,
Southampton
, pp.
401
410
.
10.
Lee
,
S.
,
Hahn
,
C.
,
Rhee
,
M.
, and
Oh
,
J. E.
, 1999, “
Effect of Triggering on the Energy Absorption Capacity of Axially Compressed Aluminium Tubes
,”
Mater. Des.
0264-1275,
20
(
1
), pp.
31
40
.
11.
DiPaolo
,
B. P.
,
Monteiro
,
P. J. M.
, and
Gronsky
,
R.
, 2004, “
Quasi-Static Axial Crush Response of a Thin-Wall, Stainless Steel Box Component
,”
Int. J. Solids Struct.
0020-7683,
41
(
14
), pp.
3707
3733
.
12.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Viegelahn
,
G. L.
,
Vaxevanidis
,
N. M.
, and
Johnson
,
W.
, 1986, “
The Inextensional Collapse of Grooved Thin-Walled Cylinders of PVC Under Axial Loading
,”
Int. J. Impact Eng.
0734-743X,
4
(
1
), pp.
41
56
.
13.
Gupta
,
N. K.
, and
Gupta
,
S. K.
, 1993, “
Effect of Annealing Size and Cutouts on Axial Collapse Behaviour of Circular Tubes
,”
Int. J. Mech. Sci.
0020-7403,
35
(
7
), pp.
597
613
.
14.
Gupta
,
N. K.
, 1998, “
Some Aspects of Axial Collapse of Cylindrical Thin-Walled Tubes
,”
Thin-Walled Struct.
0263-8231,
32
(
1–3
), pp.
111
126
.
15.
Toda
,
S.
, 1983, “
Buckling of Cylinders with Cut Outs Under Axial Compression
,”
Exp. Mech.
0014-4851,
23
, pp.
414
417
.
16.
Kormi
,
K.
,
Webb
,
D. C.
, and
Montague
,
P.
, 1993, “
Crash Behaviour of Circular Tubes with Large Side Openings
,”
Int. J. Mech. Sci.
0020-7403,
35
(
3–4
), pp.
193
208
.
17.
Marshall
,
N.
, and
Nurick
,
G. N.
, 1998, “
The Effect of Induced Imperfections on the Formation of the First Lobe of Symmetric Progressive Buckling of Thin-Walled Square Tubes
,”
Structures Under Shock Impact V (SUSI V)
,
Computational Mechanics
,
Southampton
, pp.
155
168
.
18.
Arnold
,
B.
, and
Altenhof
,
W.
, 2004, “
Experimental Observations on the Crush Characteristics of AA6061 T4 and T6 Structural Square Tubes With and Without Circular Discontinuities
,”
Int. J. Crashworthiness
1358-8265,
9
(
1
), pp.
73
87
.
19.
Chung Kim Yuen
,
S.
, and
Nurick
,
G. N.
, 2005, “
Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates—Part I—Subjected to Uniform Blast Load
,”
Int. J. Impact Eng.
0734-743X,
31
(
1
), pp.
55
83
.
20.
Chung Kim Yuen
,
S.
, and
Nurick
,
G. N.
, 2000, “
The Significance of the Thickness of a Plate When Subjected to Localised Blast Load
,”
16th International Symposium on Military Aspects of Blast and Shock, (MABS 16)
,
Oxford
,
UK
, pp.
491
499
.
21.
Farrow
,
G. H.
,
Nurick
,
G. N.
, and
Mitchell
,
G. P.
, 1995, “
Modelling of Impulsively Loaded Circular Plates Using the ABAQUS Finite Element Code
,”
Proceedings of the 13th Symposium Finite Element Methods in South Africa
,
Stellenbosch
,
South Africa
, Jan. 18–20, pp.
186
198
.
22.
Jacob
,
N.
,
Chung Kim Yuen
,
S.
,
Bonorchis
,
D.
,
Nurick
,
G. N.
,
Desai
,
S. A.
, and
Tait
,
D.
, 2004, “
Quadrangular Plates Subjected to Localised Blast Loads—An Insight Into Scaling
,”
Int. J. Impact Eng.
0734-743X,
30
(
8–9
), pp.
1179
1208
.
23.
Langdon
,
G. S.
,
Chung Kim Yuen
,
S.
, and
Nurick
,
G. N.
, 2005, “
Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates—Part II—Subjected to Localised Load
,”
Int. J. Impact Eng.
0734-743X,
31
(
1
), pp.
85
111
.
24.
Nurick
,
G. N.
, and
Martin
,
J. B.
, 1989, “
Deformation of Thin Plates Subjected to Impulsive Loading—A Review. Part II: Experimental Studies
,”
Int. J. Impact Eng.
0734-743X,
8
(
2
), pp.
171
186
.
25.
Nurick
,
G. N.
, and
Radford
,
A. M.
, 1997, “
Deformation and Tearing of Clamped Circular Plates Subjected to Localised Central Blast Loads
,”
Recent Developments in Computational and Applied Mechanics: A Volume in Honour of John B. Martin
,
International Centre for Numerical Methods in Engineering (CIMNE)
,
Barcelona, Spain
, pp.
276
301
.
26.
Nurick
,
G. N.
, and
Shave
,
G. C.
, 1996, “
The Deformation and Tearing of Thin Square Plates Subjected to Impulsive Loads—An Experimental Study
,”
Int. J. Impact Eng.
0734-743X,
18
(
1
), pp.
99
116
.
27.
Wharton
,
R. K.
,
Formby
,
S. A.
, and
Merrifield
,
R.
, 2000, “
Airblast TNT Equivalence for a Range of Commercial Blasting Explosives
,”
J. Hazard. Mater.
0304-3894,
79
(
1–2
), pp.
31
39
.
28.
Nurick
,
G. N.
, and
Bryant
,
M. W.
, 1996, “
Fragmentation Damage as a Result of an Explosion
,”
International Symposium Plasticity and Impact Mechanics
, New Delhi, India, pp.
484
498
.
29.
Langdon
,
G. S.
,
Cantwell
,
W. J.
, and
Nurick
,
G. N.
, 2005, “
The Response of Novel Thermoplastic-Based Fibre Metal Laminates—Some Preliminary Results and Observation
,”
Compos. Sci. Technol.
0266-3538,
65
(
6
), pp.
861
872
.
30.
Jones
,
N.
, 1989,
Structural Impact
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.