This two-part paper presents the results of experimental and numerical work on the crushing characteristics of square tubes, with blast-induced imperfections, subjected to axial load. In Part I, the experimental studies are presented. The approach in the studies involves creating imperfections on opposite sides at midlength of a square tube by means of localized blast loads to create three types of imperfections: nontouching domes, rebound domes, and capped domes. These imperfections change the geometry and the material properties in the midsection of the tubes and hence affect the crushing characteristics. While the blast-induced imperfections enhance the energy absorption characteristics of the tubes they also affect the lobe formation process. In Part II, the finite element package ABAQUS/EXPLICIT v6.5–6 is used to construct a 12 symmetry model by means of shell and continuum elements to simulate the tube response to the localized blast loads followed by dynamic axial loading in the form of a rigid mass impacting at a specified initial velocity. The hydrodynamic code AUTODYN is used to characterize the localized blast pressure time and spatial history. The predictions show satisfactory correlation with experiments for both crushed shapes and crushed distance.

1.
Karagiozova
,
D.
, and
Jones
,
N.
, 2001, “
Influence of Stress Waves on the Dynamic Progressive and Dynamic Plastic Buckling of Cylindrical Shells
,”
Int. J. Solids Struct.
0020-7683,
38
(
38/39
), pp.
6723
6749
.
2.
Langseth
,
M.
,
Berstad
,
T.
,
Hopperstad
,
O. S.
, and
Clausen
,
A. H.
, 1994, “
Energy Absorption in Axially Loaded Square Thin-Walled Aluminium Extrusions
,”
Structures Under Shock Impact III (SUSI III)
,
CMP
,
Southampton
, pp.
401
410
.
3.
Langseth
,
M.
,
Hopperstad
,
O. S.
, and
Berstad
,
T.
, 1999, “
Crashworthiness of Aluminium Extrusion: Validation of Numerical Simulation, Effect of Mass Ratio and Impact Velocity
,”
Int. J. Impact Eng.
0734-743X,
22
(
9/10
), pp.
829
854
.
4.
Otubushin
,
A.
, 1998, “
Detailed Validation of a Non-Linear Finite Element Code Using Dynamic Axial Crushing of a Square Tube
,”
Int. J. Impact Eng.
0734-743X,
21
(
5
), pp.
349
368
.
5.
Marsolek
,
J.
, and
Reimerdes
,
H. G.
, 2003, “
Energy Absorption of Metallic Cylindrical Shells With Induced Non-Axisymmetric Folding Patters
,”
Eighth International Symposium on Plasticity and Impact Mechanics, IMPLAST 2003
, New Delhi, India,
Phoenix Publishing House
, Mar. 16–19, pp.
454
464
.
6.
Abah
,
L.
,
Limam
,
A.
, and
Dejeammes
,
M.
, 1998, “
Effects of Cutouts on Static and Dynamic Behaviour of Square Aluminium Extrusions
,”
Fifth International Conference on Structures Under Shock and Impact (SUSI V)
,
Computational Mechanics
,
Southampton, UK
, pp.
133
142
.
7.
Markiewicz
,
E.
,
Ducrocq
,
P.
, and
Drazetic
,
P.
, 1998, “
An Inverse Approach to Determine the Constitutive Model Parameters From Axial Crushing of Thin-Walled Square Tubes
,”
Int. J. Impact Eng.
0734-743X,
21
(
6
), pp.
433
449
.
8.
Miyazaki
,
M.
,
Endo
,
H.
, and
Negishi
,
H.
, 1999, “
Dynamic Axial Plastic Buckling of Square Tube
,”
J. Mater. Process. Technol.
0924-0136,
85
(
1/3
), pp.
213
216
.
9.
Nannucci
,
P. R.
,
Marshall
,
N. S.
, and
Nurick
,
G. N.
, 1999, “
A Computational Investigation of the Progressive Buckling of Square Tubes With Geometric Imperfections
,”
Third Asia-Pacific Conference on Shock and Impact Loads on Structures
, Singapore, Nov. 24–26, pp.
335
342
.
10.
Karagiozova
,
D.
, 2003, “
Velocity and Mass Sensitivity of Circular and Square Tubes Under Axial Impact
,”
Proceedings of the Eighth International Symposium on Plasticity and Impact Mechanics (IMPLAST 2003)
, New Delhi,
Phoenix Publishing House
, pp.
403
410
.
11.
Karagiozova
,
D.
, 2003,
On the Dynamic Collapse of Circular and Square Tubes Under Axial Impact, Advances in Dynamics and Impact Mechanics
,
WIT
,
Southampton
, pp.
1
22
.
12.
Karagiozova
,
D.
, 2004, “
Dynamic Buckling of Elastic-Plastic Square Tubes Under Axial Impact-I: Stress Wave Propagation Phenomenon
,”
Int. J. Impact Eng.
0734-743X,
30
(
2
), pp.
143
166
.
13.
Karagiozova
,
D.
, and
Jones
,
N.
, 2004, “
Dynamic Buckling of Elastic-Plastic Square Tubes Under Axial Impact-II: Structural Response
,”
Int. J. Impact Eng.
0734-743X,
30
(
2
), pp.
167
192
.
14.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Ioannidis
,
M. B.
,
Kostazos
,
P. K.
, and
Chirwa
,
E. C.
, 2003, “
Static and Dynamic Axial Collapse of Fibreglass Composite Thin-Walled Tubes: Finite Element Modelling of the Crush Zone
,”
Int. J. Crashworthiness
1358-8265,
8
(
3
), pp.
247
254
.
15.
Karagiozova
,
D.
, and
Jones
,
N.
, 2000, “
Dynamic Elastic-Plastic Buckling of Circular Cylindrical Shells Under Axial Impact
,”
Int. J. Solids Struct.
0020-7683,
37
(
14
), pp.
2005
2034
.
16.
Karagiozova
,
D.
, and
Jones
,
N.
, 2001, “
Dynamic Effects on Buckling and Energy Absorption of Cylindrical Shells Under Axial Impact
,”
Thin-Walled Struct.
0263-8231,
39
(
7
), pp.
583
610
.
17.
Karagiozova
,
D.
, and
Jones
,
N.
, 2002, “
On Dynamic Buckling Phenomena in Axially Loaded Elastic-Plastic Cylindrical Shells
,”
Int. J. Non-Linear Mech.
0020-7462,
37
(
7
), pp.
1223
1238
.
18.
Karagiozova
,
D.
,
Alves
,
M.
, and
Jones
,
N.
, 2000, “
Inertia Effects in Axisymmetrically Deformed Cylindrical Shells Under Axial Impact
,”
Int. J. Impact Eng.
0734-743X,
24
(
10
), pp.
1083
1115
.
19.
Gupta
,
N. K.
,
Sekhon
,
G. S.
, and
Gupta
,
P. K.
, 2002, “
A Study of Fold Formation in Axisymmetric Axial Collapse of Round Tubes
,”
Int. J. Impact Eng.
,
27
(
1
), pp.
87
117
. 0734-743X
20.
Huh
,
H.
,
Kim
,
K. P.
, and
Kim
,
H. S.
, 2001, “
Collapse Simulation of Tubular Structures Using a Finite Element Limit Analysis Approach and Shell Elements
,”
Int. J. Mech. Sci.
,
43
(
9
), pp.
2171
2187
. 0020-7403
21.
Mamalis
,
A. G.
,
Manolakos
,
D. E.
,
Ioannidis
,
M. B.
, and
Kostazos
,
P. K.
, 2003, “
Crushing of Hybrid Square Sandwich Composite Vehicle Hollow Bodyshells With Reinforced Core Subjected to Axial Loading: Numerical Simulation
,”
Compos. Struct.
,
61
(
3
), pp.
175
186
. 0263-8223
22.
Karagiozova
,
D.
,
Nurick
,
G. N.
, and
Chung Kim Yuen
,
S.
, 2005, “
Energy Absorption of Aluminium Alloy Circular and Square Tubes Under an Axial Explosive Load
,”
Thin-Walled Struct.
0263-8231,
43
(
6
), pp.
956
982
.
23.
Jensen
,
O.
,
Langseth
,
M.
, and
Hopperstad
,
O. S.
, 2002, “
Transition Between Progressive and Global Buckling of Aluminium Extrusions
,”
Structures Under Shock and Impact VII (SUSI VII)
,
WIT
,
Southampton
, pp.
269
277
.
24.
Karagiozova
,
D.
, and
Alves
,
M.
, 2004, “
Transition From Progressive Buckling to Global Bending of Circular Shells Under Axial Impact—Part II: Theoretical Analysis
,”
Int. J. Solids Struct.
0020-7683,
41
(
5/6
), pp.
1581
1604
.
25.
Karagiozova
,
D.
, and
Alves
,
M.
, 2004, “
Transition From Progressive Buckling to Global Bending of Circular Shells Under Axial Impact—Part I: Experimental and Numerical Observations
,”
Int. J. Solids Struct.
0020-7683,
41
(
5/6
), pp.
1565
1580
.
26.
Chiandussi
,
G.
, and
Avalle
,
M.
, 2002, “
Maximisation of the Crushing Performance of a Tubular Device by Shape Optimization
,”
Comput. Struct.
0045-7949,
80
(
27/30
), pp.
2425
2432
.
27.
Nagel
,
G. M.
, and
Thambiratnam
,
D. P.
, 2004, “
Dynamic Simulation and Energy Absorption of Tapered Tubes Under Impact Loading
,”
Int. J. Crashworthiness
1358-8265,
9
(
4
), pp.
389
399
.
28.
Lust
,
R.
, 1992, “
Structural Optimization With Crashworthiness Constraints
,”
Struct. Optim.
0934-4373,
4
(
2
), pp.
85
89
.
29.
Yamazaki
,
K.
, and
Han
,
J.
, 2000, “
Maximization of the Crushing Energy Absorption of Cylindrical Shells
,”
Adv. Eng. Software
0965-9978,
31
(
6
), pp.
425
434
.
30.
Belingardi
,
G.
, and
Avalle
,
M.
, 1998, “
Optimization of a Passive Safety Device by Means of the Response Surface Methodology
,”
Proceedings of the Second Integrated Design and Manufacturing in Mechanical Engineering Conference (IDMME)
, Compiegne, France, pp.
85
92
.
31.
Avalle
,
M.
,
Chiandussi
,
G.
, and
Belingardi
,
G.
, 2002, “
Design Optimization by Response Surface Methodology: Application to Crashworthiness Design of Vehicle Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
4
), pp.
325
332
.
32.
Kim
,
H. S.
, 2002, “
New Extruded Multi-Cell Aluminum Profile for Maximum Crash Energy Absorption and Weight Efficiency
,”
Thin-Walled Struct.
0263-8231,
40
(
4
), pp.
311
327
.
33.
Theobald
,
M. D.
, and
Nurick
,
G. N.
, 2005, “
Numerical Investigation of the Response of Sandwich Panels Subject to Blast Loads
,”
International Conference on Impact Loading of Lightweight Structures
,
WIT
,
Brazil
, pp.
521
534
.
34.
Theobald
,
M. D.
, and
Nurick
,
G. N.
, 2007, “
Numerical Investigation of the Response of Sandwich-Type Panels Using Thin-Walled Tubes Subject to Blast Loads
,”
Int. J. Impact Eng.
0734-743X,
34
(
1
), pp.
134
156
.
35.
Wiehahn
,
M. A.
,
Nurick
,
G. N.
, and
Bowles
,
H. C.
, 2000, “
Thin Plate Fragmentation Due to Blast Loading: A Simulation Using Temperature Dependent Material Properties
,”
Proceedings of the Third International Conference on Applied Mechanics (SACAM 2000)
, Durban, South Africa, pp.
567
572
.
36.
Wiehahn
,
M. A.
,
Nurick
,
G. N.
, and
Bowles
,
H. C.
, 2000, “
Some Insights Into the Mechanism of the Deformation and Tearing of Thin Plates at High Strain Rates Incorporating Temperature Dependent Material Properties
,”
Structures Under Shock and Impact VI SUSI VI
,
Computational Mechanics
,
UK
, pp.
207
220
.
37.
Chung Kim Yuen
,
S.
, and
Nurick
,
G. N.
, 2005, “
Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates: Part I—Subjected to Uniform Blast Load
,”
Int. J. Impact Eng.
,
31
(
1
), pp.
55
83
. 0734-743X
38.
Langdon
,
G. S.
,
Chung Kim Yuen
,
S.
, and
Nurick
,
G. N.
, 2005, “
Experimental and Numerical Studies on the Response of Quadrangular Stiffened Plates: Part II—Subjected to Localised Load
,”
Int. J. Impact Eng.
,
31
(
1
), pp.
85
111
. 0734-743X
39.
Bridgman
,
P. W.
, 1956,
Studies in Large Flow and Fracture
,
McGraw-Hill
,
New York
.
40.
Mirone
,
G.
, 2004, “
A New Model for the Elastoplastic Characterization and the Stress-Strain Determination on the Necking Section of a Tensile Specimen
,”
Int. J. Solids Struct.
,
41
(
13
), pp.
3545
3564
. 0020-7683
41.
Marais
,
S. T.
,
Tait
,
R. B.
,
Cloete
,
T. J.
, and
Nurick
,
G. N.
, 2004, “
Material Testing at High Strain Rate Using the Split Hopkinson Pressure Bar
,”
Latin American Journal of Solids and Structures
,
1
(
3
), pp.
319
338
.
42.
Masui
,
T.
,
Nunokawa
,
T.
, and
Hiramatsu
,
T.
, 1987, “
Shape Correction of Hot Rolled Steel Using an on Line Leveller
,”
J. Jpn. Soc. Technol. Plast.
0038-1586,
28
(
312
), pp.
81
87
.
43.
Wharton
,
R. K.
,
Formby
,
S. A.
, and
Merrifield
,
R.
, 2000, “
Airblast TNT Equivalence for a Range of Commercial Blasting Explosives
,”
J. Hazard. Mater.
,
79
(
1–2
), pp.
31
39
. 0304-3894
44.
Grobbelaar
,
W. P.
, and
Nurick
,
G. N.
, 2000, “
An Investigation of Structures Subjected to Blast Loads Incorporating an Equation of State to Model the Material Behaviour of the Explosive
,”
Proceedings of the Seventh International Symposium on Structural Failure and Plasticity (IMPLAST 2000)
, Melbourne, Australia, Oct. 4–6, pp.
185
194
.
45.
Bimha
,
R. E.
, 1996, “
Response of Thin Circular Plates to Blast Loading
,” M.S. thesis, University of Cape Town, Rondebosch, South Africa.
46.
Balden
,
V. H.
, and
Nurick
,
G. N.
, 2005, “
Numerical Simulation of the Post Failure Motion of Steel Plates Subjected to Blast Loading
,”
Int. J. Impact Eng.
,
32
(
1–4
), pp.
14
34
. 0734-743X
47.
Jones
,
N.
, 1989,
Structural Impact
,
Cambridge University Press
,
Cambridge, England
.
You do not currently have access to this content.