In this paper, a numerical algorithm using a coupled finite element-differential quadrature (DQ) method is proposed for the dynamic analysis of laminated composite coated beams subjected to a stream of accelerating oscillators. The finite element method with cubic Hermitian interpolation functions is used to discretize the spatial domain. The DQ method is then employed to discretize the time domain. The resulting set of algebraic equations can be solved by either direct methods or iterative methods. It is revealed that the DQ method stands out in numerical accuracy, as well as in computational efficiency, over the well-known standard finite difference schemes, such as the Newmark, Wilson θ, Houbolt, and central difference methods, for the cases considered. Furthermore, in the numerical examples, the effects of various parameters having something to do with the title problem, such as lamina thickness, orientation of the coats, arrival time intervals, velocities, and accelerations of the oscillators on the dynamic behavior of the system, are investigated. The technique presented in this investigation is general and can be easily applied to any time-dependent problem.

1.
Zibdeh
,
H. S.
, and
Abu-Hilal
,
M.
, 2003, “
Stochastic Vibration of Laminated Composite Coated Beam Traversed by a Random Moving Load
,”
Eng. Struct.
0141-0296,
25
, pp.
397
404
.
2.
Fryba
,
L.
, 1972,
Vibration of Solids and Structures Under Moving Loads
,
Noordhoff International
,
the Netherlands
.
3.
Katz
,
R.
,
Lee
,
C. W.
,
Ulsoy
,
A. G.
, and
Scott
,
R. A.
, 1987, “
Dynamic Stability and Response of a Beam Subjected to a Deflection Dependent Moving Load
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
109
, pp.
361
365
.
4.
Rao
,
G. V.
, 2000, “
Linear Dynamics of an Elastic Beam Under Moving Loads
,”
ASME J. Vibr. Acoust.
0739-3717,
122
, pp.
281
289
.
5.
Lin
,
Y. -H.
, and
Trethewey
,
M. W.
, 1990, “
Finite Element Analysis of Elastic Beams Subjected to Moving Dynamic Loads
,”
J. Sound Vib.
0022-460X,
136
, pp.
323
342
.
6.
Lin
,
Y. -H.
,
Trethewey
,
M. W.
,
Reed
,
H. M.
,
Shawley
,
J. D.
, and
Sager
,
S. J.
, 1990, “
Dynamic Modeling and Analysis of a High Speed Precision Drilling Machine
,”
ASME J. Vibr. Acoust.
0739-3717,
112
, pp.
355
365
.
7.
Saigal
,
S.
, 1986, “
Dynamic Behavior of Beam Structures Carrying Moving Masses
,”
ASME J. Appl. Mech.
0021-8936,
53
, pp.
222
224
.
8.
Benedetti
,
G. A.
, 1974, “
Dynamic Stability of a Beam Loaded by a Sequence of Moving Mass Particles
,”
ASME J. Appl. Mech.
0021-8936,
41
, pp.
1069
1071
.
9.
Nelson
,
H. D.
, and
Conover
,
R. A.
, 1971, “
Dynamic Stability of a Beam Carrying Moving Masses
,”
ASME J. Appl. Mech.
0021-8936,
38
, pp.
1003
1006
.
10.
Pesterev
,
A. V.
, and
Bergman
,
L. A.
, 1998, “
Response of a Nonconservative Continuous System to a Moving Concentrated Load
,”
ASME J. Appl. Mech.
0021-8936,
65
, pp.
436
444
.
11.
Esmailzadeh
,
E.
, and
Ghorashi
,
M.
, 1997, “
Vibration Analysis of a Timoshenko Beam Subjected to a Traveling Mass
,”
J. Sound Vib.
0022-460X,
199
, pp.
615
628
.
12.
Wang
,
R. T.
, 1997, “
Vibration of Multi-Span Timoshenko Beams to a Moving Force
,”
J. Sound Vib.
0022-460X,
207
, pp.
731
742
.
13.
Kadivar
,
M. H.
, and
Mohebpour
,
S. R.
, 1998, “
Forced Vibration of Unsymmetric Laminated Composite Beams Under the Action of Moving Loads
,”
Compos. Sci. Technol.
0266-3538,
58
, pp.
1675
1684
.
14.
Kadivar
,
M. H.
, and
Mohebpour
,
S. R.
, 1998, “
Finite Element Analysis of Unsymmetric Laminated Composite Beams With Shear Effect and Rotary Inertia Under the Action of Moving Loads
,”
Finite Elem. Anal. Des.
,
29
, pp.
259
273
. 0168-874X
15.
Lee
,
S. Y.
, and
Yhim
,
S. S.
, 2004, “
Dynamic Analysis of Composite Plates Subjected to Multi-Moving Loads Based on a Third Order Theory
,”
Int. J. Solids Struct.
0020-7683,
41
, pp.
4457
4472
.
16.
Bert
,
C. W.
, and
Malik
,
M.
, 1996, “
Differential Quadrature Method in Computational Mechanics: A Review
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
1
28
.
17.
Quan
,
J. R.
, and
Chang
,
C. T.
, 1989, “
New Insights in Solving Distributed System Equations by the Quadrature Methods, Part I: Analysis
,”
Comput. Chem. Eng.
0098-1354,
13
, pp.
779
788
.
18.
Shu
,
C.
, 2000,
Differential Quadrature and Its Application in Engineering
,
Springer
,
New York
.
19.
Teboub
,
Y.
, and
Hajela
,
P.
, 1995, “
Free Vibrations of Generally Layered Composite Beams Using Symbolic Computations
,”
Compos. Struct.
0263-8223,
33
, pp.
123
134
.
20.
Hamada
,
A.
, 1995, “
Vibration and Damping Analysis of Beams With Composite Coats
,”
Compos. Struct.
0263-8223,
32
, pp.
33
38
.
21.
Bathe
,
K. J.
, and
Wilson
,
E. L.
, 1976,
Numerical Methods in Finite Element Analysis
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
22.
Meirovitch
,
L.
, 1967,
Analytical Methods in Vibrations
,
Macmillan
,
New York
.
23.
Pesterev
,
A. V.
, and
Bergman
,
L. A.
, 1997, “
Response of Elastic Continuum Carrying Moving Linear Oscillator
,”
J. Eng. Mech.
0733-9399,
123
, pp.
878
88
.
You do not currently have access to this content.