A continuum model is developed for describing deformation and failure mechanisms in crystalline solids (ceramics and minerals) with the cubic spinel structure. The constitutive model describes the response under conditions pertinent to impact loading: high pressures, high strain rates, and, possibly, high temperatures. Nonlinear elasticity, anisotropy, thermoelastic coupling, dislocation glide, twinning, shear-induced fracture, and pressure-induced pore collapse are addressed. The model is applied to enable an improved understanding of transparent ceramic aluminum oxynitride (AlON). Calculations demonstrate an accurate depiction of hydrostatic and shear stresses observed experimentally in shock-loaded polycrystalline AlON. Various choices of initial resistances to slip, twinning, or shear fracture that result in similar predictions for average stresses in polycrystals but different predictions for defect densities (accumulated dislocations and twin volume fractions) are investigated. Predictions for single crystals provide insight into grain orientation effects not available from previous experimental investigations.

1.
Farber
,
Y. A.
,
Yoon
,
S. Y.
,
Lagerlof
,
K. P. D.
, and
Heuer
,
A. H.
, 1993, “
Microplasticity During High Temperature Indentation and the Peierls Potential of Sapphire (α-Al2O3) Single Crystals
,”
Phys. Status Solidi A
0031-8965,
137
, pp.
485
498
.
2.
Clayton
,
J. D.
, 2009, “
A Continuum Description of Nonlinear Elasticity, Slip and Twinning, With Application to Sapphire
,”
Proc. R. Soc. London, Ser. A
0950-1207,
465
, pp.
307
334
.
3.
Lankford
,
J.
,
Predebon
,
W. W.
,
Staehler
,
J.
,
Subhash
,
G.
,
Pletka
,
B.
, and
Anderson
,
C.
, 1998, “
The Role of Plasticity as a Limiting Factor in the Compressive Failure of High Strength Ceramics
,”
Mech. Mater.
0167-6636,
29
, pp.
205
218
.
4.
Paliwal
,
B.
,
Ramesh
,
K. T.
,
McCauley
,
J. W.
, and
Chen
,
M.
, 2008, “
Dynamic Compressive Failure of AlON Under Controlled Planar Confinement
,”
J. Am. Ceram. Soc.
0002-7820,
91
, pp.
3619
3629
.
5.
Tymiak
,
N.
,
Chrobak
,
D.
,
Gerberich
,
W.
,
Warren
,
O.
, and
Nowak
,
R.
, 2009, “
Role of Competition Between Slip and Twinning in Nanoscale Deformation of Sapphire
,”
Phys. Rev. B
0556-2805,
79
, p.
174116
.
6.
Sickafus
,
K. E.
,
Wills
,
J. M.
, and
Grimes
,
J. W.
, 1999, “
Structure of Spinel
,”
J. Am. Ceram. Soc.
0002-7820,
82
, pp.
3279
3292
.
7.
McCauley
,
J. W.
,
Patel
,
P.
,
Chen
,
M.
,
Gilde
,
G.
,
Strassburger
,
E.
,
Paliwal
,
B.
,
Ramesh
,
K. T.
, and
Dandekar
,
D. P.
, 2009, “
AlON: A Brief History of Its Emergence and Evolution
,”
J. Eur. Ceram. Soc.
0955-2219,
29
, pp.
223
236
.
8.
Veyssiere
,
P.
,
Kirby
,
S. H.
, and
Rabier
,
J.
, 1980, “
Plastic Deformation of MgO:nAl2O3 Spinels at Temperatures Below 1000°C (0.5 Tm)
,”
J. Phys.
,
41
, pp.
175
178
.
9.
Mitchell
,
T. E.
, 1999, “
Dislocations and Mechanical Properties of MgO–Al2O3 Spinel Single Crystals
,”
J. Am. Ceram. Soc.
0002-7820,
82
, pp.
3305
3316
.
10.
Batyrev
,
I. G.
,
Rice
,
B. M.
, and
McCauley
,
J. W.
, 2009, “
First Principles Calculations of Nitrogen Atomic Position Effects on Elastic Properties of Aluminum Oxynitride (AlON) Spinel
,
Materials Research Society Fall Meeting
, Boston, MA, Nov. 30–Dec. 1, Paper No. LL5.3.
11.
Corbin
,
N. D.
, 1989, “
Aluminum Oxynitride Spinel: A Review
,”
J. Eur. Ceram. Soc.
0955-2219,
5
, pp.
143
154
.
12.
Dandekar
,
D. P.
,
Vaughan
,
B. A. M.
, and
Proud
,
W. G.
, 2007, “
Shear Strength of Aluminum Oxynitride
,”
Shock Compression of Condensed Matter
,
M.
Elert
,
M. D.
Furnish
,
R.
Chau
,
N.
Holmes
, and
J.
Nguyen
, eds.,
American Institute of Physics
,
Melville, NY
.
13.
Graham
,
E. K.
,
Munly
,
W. C.
,
McCauley
,
J. W.
, and
Corbin
,
N. D.
, 1988, “
Elastic Properties of Polycrystalline Aluminum Oxynitride Spinel and Their Dependence on Pressure, Temperature, and Composition
,”
J. Am. Ceram. Soc.
0002-7820,
71
, pp.
807
812
.
14.
Zhang
,
K. S.
,
Zhang
,
D.
,
Feng
,
R.
, and
Wu
,
M. S.
, 2005, “
Microdamage in Polycrystalline Ceramics Under Dynamic Compression and Tension
,”
J. Appl. Phys.
0021-8979,
98
, p.
023505
.
15.
Kraft
,
R. H.
,
Molinari
,
J. F.
,
Ramesh
,
K. T.
, and
Warner
,
D. H.
, 2008, “
Computational Micromechanics of Dynamic Compressive Loading of a Brittle Polycrystalline Material Using a Distribution of Grain Boundary Properties
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
2618
2641
.
16.
Foreman
,
A. J. E.
, 1955, “
Dislocation Energies in Anisotropic Crystals
,”
Acta Metall.
0001-6160,
3
, pp.
322
330
.
17.
Hirth
,
J. P.
, and
Lothe
,
J.
, 1982,
Theory of Dislocations
,
Wiley
,
New York
.
18.
Brace
,
W. F.
,
Paulding
,
B. W.
, and
Scholz
,
C.
, 1966, “
Dilatancy in the Fracture of Crystalline Rocks
,”
J. Geophys. Res.
0148-0227,
71
, pp.
3939
3953
.
19.
Clayton
,
J. D.
, 2008, “
A Model for Deformation and Fragmentation in Crushable Brittle Solids
,”
Int. J. Impact Eng.
0734-743X,
35
, pp.
269
289
.
20.
Graham
,
R. A.
, and
Brooks
,
W. P.
, 1971, “
Shock-Wave Compression of Sapphire From 15 to 420 kbar
,”
J. Phys. Chem. Solids
0022-3697,
32
, pp.
2311
2330
.
21.
Grady
,
D. E.
, 1998, “
Shock-Wave Compression of Brittle Solids
,”
Mech. Mater.
0167-6636,
29
, pp.
181
203
.
22.
Clayton
,
J. D.
, 2010, “
Deformation, Fracture, and Fragmentation in Brittle Geologic Solids
,”
Int. J. Fract.
0376-9429,
163
, pp.
151
172
.
23.
Clayton
,
J. D.
, 2010, “
Modeling Nonlinear Electromechanical Behavior of Shocked Silicon Carbide
,”
J. Appl. Phys.
0021-8979,
107
, p.
013520
.
24.
Cazamias
,
J. U.
,
Fiske
,
P. S.
, and
Bless
,
S. J.
, 2001, “
Shock Properties of AlON
,”
Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena
,
K. P.
Staudhammer
,
L. E.
Murr
, and
M. A.
Meyers
, eds.,
Elsevier
,
New York
, pp.
181
188
.
25.
Vaughan
,
B. A. M.
,
Proud
,
W. G.
, and
Field
,
J. E.
, 2001, “
Shock Properties of Aluminum Oxynitride
,” Cavendish Laboratory, Cambridge, UK, Report No. SP-1092.
26.
Sekine
,
T.
,
Li
,
X.
,
Kobayashi
,
T.
,
Yamashita
,
Y.
,
Patel
,
P.
, and
McCauley
,
J. W.
, 2003, “
Aluminum Oxynitride at Pressures up to 180 GPa
,”
J. Appl. Phys.
0021-8979,
94
, pp.
4803
4806
.
27.
Thornhill
,
T. F.
,
Vogler
,
T. J.
,
Rienhart
,
W. D.
, and
Chhabildas
,
L. C.
, 2006, “
Polycrystalline Aluminum Oxynitride Hugoniot and Optical Properties
,”
Shock Compression of Condensed Matter
,
M. D.
Furnish
,
M.
Elert
,
T. P.
Russell
, and
C. T.
White
, eds.,
American Institute of Physics
,
Melville, NY
.
28.
Lee
,
E. H.
, 1969, “
Elastic-Plastic Deformation at Finite Strains
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
1
6
.
29.
Asaro
,
R. J.
, 1983, “
Crystal Plasticity
,”
ASME J. Appl. Mech.
0021-8936,
50
, pp.
921
934
.
30.
Thurston
,
R. N.
, 1974, “
Waves in Solids
,”
Handbuch der Physik, Vol. VIa/4
,
C.
Truesdell
, ed.,
Springer-Verlag
,
Berlin
, pp.
109
308
.
31.
Clayton
,
J. D.
, 2009, “
Modeling Effects of Crystalline Microstructure, Energy Storage Mechanisms, and Residual Volume Changes on Penetration Resistance of Precipitate-Hardened Aluminum Alloys
,”
Composites, Part B
1359-8368,
40
, pp.
443
450
.
32.
Clayton
,
J. D.
, and
Bammann
,
D. J.
, 2009, “
Finite Deformations and Internal Forces in Elastic-Plastic Crystals: Interpretations From Nonlinear Elasticity and Anharmonic Lattice Statics
,”
ASME J. Eng. Mater. Technol.
0094-4289,
131
, p.
041201
.
33.
Clayton
,
J. D.
, 2009, “
A Non-Linear Model for Elastic Dielectric Crystals With Vacancies
,”
Int. J. Non-Linear Mech.
0020-7462,
44
, pp.
675
688
.
34.
Mindlin
,
R. D.
, 1972, “
Elasticity, Piezoelectricity, and Crystal Lattice Dynamics
,”
J. Elast.
0374-3535,
2
, pp.
217
282
.
35.
Clayton
,
J. D.
,
Chung
,
P. W.
,
Grinfeld
,
M. A.
, and
Nothwang
,
W. D.
, 2008, “
Kinematics, Electromechanics, and Kinetics of Dielectric and Piezoelectric Crystals With Lattice Defects
,”
Int. J. Eng. Sci.
0020-7225,
46
, pp.
10
30
.
36.
Li
,
H.
,
Suematsu
,
H.
,
Iseki
,
T.
, and
Bradt
,
R. C.
, 1991, “
Microhardness Anisotropy and the Indentation Load/Size Effect in MgO–xAl2O3 Single Crystals
,”
J. Ceram. Soc. Japan
0914-5400,
99
, pp.
1079
1087
.
37.
Schäfer
,
H.
,
Muller
,
W. F.
, and
Hornemann
,
U.
, 1983, “
Shock Effects in MgOAl2O3-Spinel
,”
Phys. Chem. Miner.
0342-1791,
9
, pp.
248
252
.
38.
Hornstra
,
J.
, 1960, “
Dislocations, Stacking Faults and Twins in the Spinel Structure
,”
J. Phys. Chem. Solids
0022-3697,
15
, pp.
311
323
.
39.
McCauley
,
J. W.
, 1978, “
A Simple Model for Aluminum Oxynitride Spinel
,”
J. Am. Ceram. Soc.
0002-7820,
61
, pp.
372
373
.
40.
Kocks
,
U. F.
,
Argon
,
A. S.
, and
Ashby
,
M. F.
, 1975, “
Thermodynamics and Kinetics of Slip
,”
Prog. Mater. Sci.
0079-6425,
19
, pp.
1
288
.
41.
Becker
,
R.
, 2004, “
Effects of Crystal Plasticity on Materials Loaded at High Pressures and Strain Rates
,”
Int. J. Plast.
0749-6419,
20
, pp.
1983
2006
.
42.
Christian
,
J. W.
, and
Mahajan
,
S.
, 1995, “
Deformation Twinning
,”
Prog. Mater. Sci.
0079-6425,
39
, pp.
1
157
.
43.
Taylor
,
G. I.
, 1934, “
The Mechanism of Plastic Deformation of Crystals
,”
Proc. R. Soc. London, Ser. A
0950-1207,
145
, pp.
362
387
.
44.
Clayton
,
J. D.
, 2005, “
Dynamic Plasticity and Fracture in High Density Polycrystals: Constitutive Modeling and Numerical Simulation
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
261
301
.
45.
Clayton
,
J. D.
, 2005, “
Modeling Dynamic Plasticity and Spall Fracture in High Density Polycrystalline Alloys
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
4613
4640
.
46.
Tressler
,
R. E.
, and
Barber
,
D. J.
, 1974, “
Yielding and Flow of C-Axis Sapphire Filaments
,”
J. Am. Ceram. Soc.
0002-7820,
57
, pp.
13
19
.
47.
Daneu
,
N.
,
Rečnik
,
A.
,
Yamazaki
,
T.
, and
Dolenec
,
T.
, 2007, “
Structure and Chemistry of (111) Twin Boundaries in MgAl2O4 Spinel Crystals From Mogok
,”
Phys. Chem. Miner.
0342-1791,
34
, pp.
233
247
.
48.
Mackenzie
,
J. K.
, 1950, “
The Elastic Constants of a Solid Containing Spherical Holes
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
63
, pp.
2
11
.
49.
Taylor
,
G. I.
, 1938, “
Plastic Strain in Metals
,”
J. Inst. Met.
0020-2975,
62
, pp.
307
324
.
50.
Kocks
,
U. F.
, 1970, “
The Relation Between Polycrystal Deformation and Single Crystal Deformation
,”
Metall. Trans.
0026-086X,
1
, pp.
1121
1143
.
51.
Wenk
,
H. -R.
, and
Van Houtte
,
P.
, 2004, “
Texture and Anisotropy
,”
Rep. Prog. Phys.
0034-4885,
67
, pp.
1367
1428
.
52.
Schultz
,
R. A.
,
Jensen
,
M. C.
, and
Bradt
,
R. C.
, 1994, “
Single Crystal Cleavage of Brittle Materials
,”
Int. J. Fract.
0376-9429,
65
, pp.
291
312
.
53.
Mishra
,
R. K.
, and
Thomas
,
G.
, 1977, “
Surface Energy of Spinel
,”
J. Appl. Phys.
0021-8979,
48
, pp.
4576
4580
.
54.
Steeds
,
J. W.
, 1973,
Introduction to Anisotropic Elasticity Theory of Dislocations
,
Clarendon
,
Oxford
.
55.
Nabarro
,
F. R. N.
, 1947, “
Dislocations in a Simple Cubic Lattice
,”
Proc. Phys. Soc. London
0370-1328,
59
, pp.
256
272
.
56.
Eshelby
,
J. D.
, 1949, “
Edge Dislocations in Anisotropic Materials
,”
Philos. Mag.
1478-6435,
40
, pp.
903
912
.
You do not currently have access to this content.