Sandwich beams comprising identical face sheets and a square honeycomb core were manufactured from carbon fiber composite sheets. Analytical expressions were derived for four competing collapse mechanisms of simply supported and clamped sandwich beams in three-point bending: core shear, face microbuckling, face wrinkling, and indentation. Selected geometries of sandwich beams were tested to illustrate these collapse modes, with good agreement between analytic predictions and measurements of the failure load. Finite element (FE) simulations of the three-point bending responses of these beams were also conducted by constructing a FE model by laying up unidirectional plies in appropriate orientations. The initiation and growth of damage in the laminates were included in the FE calculations. With this embellishment, the FE model was able to predict the measured load versus displacement response and the failure sequence in each of the composite beams.

1.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
, 2000,
Metal Foams: A Design Guide
,
Butterworth-Heinemann
,
Boston, MA
.
2.
Deshpande
,
V. S.
,
Ashby
,
M. F.
, and
Fleck
,
N. A.
, 2001, “
Foam Topology Bending Versus Stretching Dominated Architectures
,”
Acta Mater.
1359-6454,
49
(
6
), pp.
1035
1040
.
3.
Gibson
,
L. J.
, and
Ashby
,
M. F.
, 1997,
Cellular Solids, Structure and Properties
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
4.
Wadley
,
H. N. G.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2003, “
Fabrication and Structural Performance of Periodic Cellular Metal Sandwich Structures
,”
Compos. Sci. Technol.
0266-3538,
63
(
16
), pp.
2331
2343
.
5.
Côté
,
F.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2004, “
The Out-of-Plane Compressive Behavior of Metallic Honeycombs
,”
Mater. Sci. Eng., A
0921-5093,
380
(
1–2
), pp.
272
280
.
6.
Côté
,
F.
,
Deshpande
,
V. S.
,
Fleck
,
N. A.
, and
Evans
,
A. G.
, 2006, “
The Compressive and Shear Responses of Corrugated and Diamond Lattice Materials
,”
Int. J. Solids Struct.
0020-7683,
43
(
20
), pp.
6220
6242
.
7.
Finnegan
,
K.
,
Kooistra
,
G.
,
Wadley
,
H. N. G.
, and
Deshpande
,
V. S.
, 2007, “
The Compressive Response of Carbon Fiber Composite Pyramidal Truss Sandwich Cores
,”
Int. J. Mater. Res.
1862-5282,
98
(
12
), pp.
1264
1272
.
8.
Russell
,
B. P.
,
Deshpande
,
V. S.
, and
Wadley
,
H. N. G.
, 2008, “
Quasistatic Deformation and Failure Modes of Composite Square Honeycombs
,”
J. Mech. Mater. Struct.
1559-3959,
3
(
7
), pp.
1315
1340
.
9.
Kazemahvazi
,
S.
, and
Zenkert
,
D.
, 2009, “
Corrugated All-Composite Sandwich Structures. Part 1: Modeling
,”
Compos. Sci. Technol.
0266-3538,
69
(
7–8
), pp.
913
919
.
10.
Kazemahvazi
,
S.
,
Tanner
,
D.
, and
Zenkert
,
D.
, 2009, “
Corrugated All-Composite Sandwich Structures. Part 2: Failure Mechanisms and Experimental Programme
,”
Compos. Sci. Technol.
0266-3538,
69
(
7–8
), pp.
920
925
.
11.
Zenkert
,
D.
, 1996,
An Introduction to Sandwich Construction
,
Chameleon
,
London, UK
.
12.
Plantema
,
F. J.
, 1966,
Sandwich Construction
,
Wiley
,
New York
.
13.
Allen
,
H. G.
, 1969,
Analysis and Design of Structural Sandwich Panels
,
Pergamon
,
Oxford, UK
.
14.
Chen
,
C.
,
Harte
,
A. M.
, and
Fleck
,
N. A.
, 2001, “
The Plastic Collapse of Sandwich Beams With a Metallic Foam Core
,”
Int. J. Mech. Sci.
0020-7403,
43
(
6
), pp.
1483
1506
.
15.
McCormack
,
T. M.
,
Miller
,
R.
,
Kesler
,
O.
, and
Gibson
,
L. J.
, 2001, “
Failure of Sandwich Beams With Metallic Foam Cores
,”
Int. J. Solids Struct.
0020-7683,
38
(
28–29
), pp.
4901
4920
.
16.
Petras
,
A.
, and
Sutcliffe
,
M. P. F.
, 1999, “
Failure Mode Maps for Honeycomb Sandwich Panels
,”
Compos. Struct.
0263-8223,
44
(
4
), pp.
237
252
.
17.
Shenhar
,
Y.
,
Frostig
,
Y.
, and
Altus
,
E.
, 1996, “
Stresses and Failure Patterns in the Bending of Sandwich Beams With Transversely Flexible Cores and Laminated Composite Skins
,”
Compos. Struct.
0263-8223,
35
(
2
), pp.
143
152
.
18.
Frostig
,
Y.
,
Baruch
,
M.
,
Vilnay
,
O.
, and
Sheinman
,
I.
, 1992, “
High-Order Theory for Sandwich-Beam Behavior With Transversely Flexible Core
,”
J. Eng. Mech.
0733-9399,
118
(
5
), pp.
1026
1043
.
19.
Frostig
,
Y.
, and
Baruch
,
M.
, 1993, “
High-Order Buckling Analysis of Sandwich Beams With Transversely Flexible Core
,”
J. Eng. Mech.
0733-9399,
119
(
3
), pp.
476
495
.
20.
Steeves
,
C. A.
, and
Fleck
,
N. A.
, 2004, “
Collapse Mechanisms of Sandwich Beams With Composite Faces and a Foam Core, Loaded in Three-Point Bending. Part 1: Analytical Models and Minimum Weight Design
,”
Int. J. Mech. Sci.
0020-7403,
46
(
4
), pp.
561
583
.
21.
Tagarielli
,
V. L.
,
Fleck
,
N. A.
, and
Deshpande
,
V. S.
, 2004, “
Collapse of Clamped and Simply Supported Composite Sandwich Beams in Three-Point Bending
,”
Composites, Part B
1359-8368,
35
(
6–8
), pp.
523
534
.
22.
Daniel
,
I. M.
, and
Gdoutos
,
E. E.
, 2009, “
Failure Modes of Composite Sandwich Beams
,”
Major Accomplishments in Composite Materials and Sandwich Structures
,
Springerlink
,
New York
.
23.
Daniel
,
I. M.
,
Rajapakse
,
Y. D. S.
, and
Gdoutos
,
E. E.
, eds., 2009,
Major Accomplishments in Composite Materials and Sandwich Structures
,
Springer
,
New York
.
24.
Matzenmiller
,
A.
,
Lubliner
,
J.
, and
Taylor
,
R. L.
, 1995, “
A Constitutive Model for Anisotropic Damage in Fiber-Composites
,”
Mech. Mater.
0167-6636,
20
(
2
), pp.
125
152
.
25.
Hashin
,
Z.
, 1980, “
Failure Criteria for Unidirectional Fiber Composites
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
47
(
2
), pp.
329
334
.
26.
Roark
,
R.
, and
Young
,
W.
, 1975,
Formulas for Stress and Strain
, 5th ed.,
McGraw-Hill
,
Tokyo
.
You do not currently have access to this content.