A finite element formulation of a nonclassical beam theory based on the Gurtin–Murdoch model for continua with deformable elastic surfaces is presented. The governing equations for thin and thick beams are used together with a weighted residual formulation to explicitly obtain the beam stiffness and mass matrices. Numerical solutions for selected test cases are compared with the analytical results available in literature for beam static deflections, natural frequencies, and buckling loads. The modified bending stiffness corresponding to the present model agrees closely with a recently reported rigorous solution. The maximum influence of surface energy effects is observed for cantilever beams. The finite element scheme provides an efficient tool to analyze, design, and predict the mechanical response of beam elements encountered in nanoelectromechanical systems and other nanoscale devices.

1.
Craighead
,
H. G.
, 2000, “
Nanoelectromechanical Systems
,”
Science
0036-8075,
290
, pp.
1532
1535
.
2.
Chen
,
C. Q.
,
Shi
,
Y.
,
Zhang
,
Y. S.
,
Zhu
,
J.
, and
Yan
,
Y. J.
, 2006, “
Size Dependence of Young’s Modulus in ZnO Nanowires
,”
Phys. Lett.
0375-9601,
96
, p.
075505
.
3.
Wong
,
E. W.
,
Sheehan
,
P. E.
, and
Lieber
,
C. M.
, 1997, “
Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes
,”
Science
0036-8075,
277
, pp.
1971
1975
.
4.
Miller
,
R. E.
, and
Shenoy
,
V. B.
, 2000, “
Size-Dependent Elastic Properties of Nanosized Structural Elements
,”
Nanotechnology
0957-4484,
11
(
3
), pp.
139
147
.
5.
Yakobson
,
B. I.
, 2003, “
Nanomechanics
,”
Handbook of Nanoscience, Engineering and Technology
,
A. G.
William
,
W. B.
Donald
,
E. L.
Sergey
, and
J. L.
Gerard
, eds.,
CRC
,
Boca Raton, FL
, Chap. 17.
6.
Lee
,
B.
, and
Rudd
,
R. E.
, 2007, “
First-Principles Study of the Young’s Modulus of Si⟨001⟩ Nanowires
,”
Phys. Rev. B
0556-2805,
75
, p.
041305
(R).
7.
Villain
,
P.
,
Beauchamp
,
P.
,
Badawi
,
K. F.
,
Goudeau
,
P.
, and
Renault
,
P. O.
, 2004, “
Atomistic Calculation of Size Effects on Elastic Coefficients in Nanometre-Sized Tungsten Layers and Wires
,”
Scr. Mater.
1359-6462,
50
, pp.
1247
1251
.
8.
Shenoy
,
V. B.
, 2005, “
Atomistic Calculations of Elastic Properties of Metallic fcc Crystal Surfaces
,”
Phys. Rev.
0031-899X,
71
, p.
094104
.
9.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975a, “
A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
57
, pp.
291
323
.
10.
Gurtin
,
M. E.
, and
Murdoch
,
A. I.
, 1975b, “
Addenda to Our Paper: A Continuum Theory of Elastic Material Surfaces
,”
Arch. Ration. Mech. Anal.
0003-9527,
59
, pp.
389
390
.
11.
Cuenot
,
S.
,
Fretigny
,
C.
,
Champagne
,
S. D.
, and
Nysten
,
B.
, 2004, “
Surface Tension Effect on the Mechanical Properties of Nanomaterials Measured by Atomic Force Microscopy
,”
Phys. Rev. B
0556-2805,
69
, p.
165410
.
12.
Jing
,
G. Y.
,
Duan
,
H. L.
,
Sun
,
X. M.
,
Zhang
,
Z. S.
,
Xu
,
J.
,
Li
,
Y. D.
,
Wang
,
J. X.
, and
Yu
,
D. P.
, 2006, “
Surface Effects on Elastic Properties of Silver Nanowires: Contact Atomic-Force Microscopy
,”
Phys. Rev. B
0556-2805,
73
, p.
235409
.
13.
Lim
,
C. W.
, and
He
,
L. H.
, 2004, “
Size-Dependent Nonlinear Response of Thin Elastic Films With Nano-Scale Thickness
,”
Int. J. Mech. Sci.
0020-7403,
46
, pp.
1715
1726
.
14.
Lu
,
P.
,
He
,
L. H.
,
Lee
,
H. P.
, and
Lu
,
C.
, 2006, “
Thin Plate Theory Including Surface Effects
,”
Int. J. Solids Struct.
0020-7683,
43
, pp.
4631
4647
.
15.
Liu
,
C.
, and
Rajapakse
,
R. K. N. D.
, 2010, “
Surface Energy Incorporated Continuum Models for Static and Dynamic Response of Nanoscale Beams
,”
IEEE Trans. Nanotechnol.
1536-125X,
9
(
4
), pp.
422
431
.
16.
Wei
,
G.
,
Shouwen
,
Y.
, and
Ganyun
,
H.
, 2006, “
Finite Element Characterization of the Size-Dependent Mechanical Behavior in Nanosystems
,”
Nanotechnology
0957-4484,
17
, pp.
1118
1122
.
17.
Tian
,
L.
, and
Rajapakse
,
R. K. N. D.
, 2007, “
Finite Element Modeling of Nanoscale Inhomogeneities in an Elastic Matrix
,”
Comput. Mater. Sci.
0927-0256,
41
, pp.
44
53
.
18.
Park
,
H. S.
, 2009, “
Quantifying the Size-Dependent Effect of the Residual Surface Stress on the Resonant Frequencies of Silicon Nanowires If Finite Deformation Kinematics Are Considered
,”
Nanotechnology
0957-4484,
20
, p.
115701
.
19.
Park
,
H. S.
, and
Klein
,
P. A.
, 2008, “
Surface Stress Effects on the Resonant Properties of Metal Nanowires: The Importance of Finite Deformation Kinematics and the Impact of the Residual Surface Stress
,”
J. Mech. Phys. Solids
0022-5096,
56
, pp.
3144
3166
.
20.
Javili
,
A.
, and
Steimann
,
P.
, 2009, “
A Finite Element Framework for Continua With Boundary Energies, Part I: Two-Dimensional Case
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
2198
2208
.
21.
He
,
J.
, and
Lilley
,
C. M.
, 2009, “
The Finite Element Absolute Nodal Coordinate Formulation Incorporated With Surface Stress Effect to Model Elastic Bending Nanowires in Large Deformation
,”
Comput. Mech.
0178-7675,
44
, pp.
395
403
.
22.
Lagowski
,
J.
,
Gatos
,
H. C.
, and
Sproles
,
E. S.
, Jr.
, 1975, “
Surface Stress and Normal Mode of Vibration of Thin Crystal: GaAs
,”
Appl. Phys. Lett.
0003-6951,
26
, pp.
493
495
.
23.
Gurtin
,
M. E.
,
Markenscoff
,
X.
, and
Thurston
,
R. N.
, 1976, “
Effect of Surface Stress on the Natural Frequency of Thin Crystals
,”
Appl. Phys. Lett.
0003-6951,
29
, pp.
529
530
.
24.
Wang
,
Z. Q.
,
Zhao
,
Y. P.
, and
Huang
,
Z. P.
, 2010, “
The Effects of Surface Tension on the Elastic Properties of Nano Structures
,”
Int. J. Eng. Sci.
0020-7225,
48
, pp.
140
150
.
25.
Zhu
,
H. X.
,
Wang
,
J. X.
, and
Karihaloo
,
B.
, “
Effects of Surface and Initial Stresses on the Bending Stiffness of Trilayer Plates and Nanofilms
,” 2009,
J. Mech. Mater. Struct.
1559-3959,
4
, pp.
589
604
.
26.
Kwon
,
Y. W.
, and
Bang
,
H.
, 1997,
The Finite Element Method Using Matlab
,
CRC
,
Boca Raton, FL
.
27.
Daw
,
M. S.
, and
Bakes
,
M. I.
, 1984, “
Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals
,”
Phys. Rev. B
0556-2805,
29
, pp.
6443
6453
.
28.
Zhu
,
Y.
,
Xu
,
F.
,
Qin
,
Q.
,
Fung
,
W. Y.
, and
Lu
,
W.
, 2009, “
Mechanical Properties of Vapor-Liquid-Solid Synthesized Silicon Nanowires
,”
Nano Lett.
1530-6984,
9
(
11
), pp.
3934
3939
.
29.
Kizuka
,
T.
,
Takatani
,
Y.
,
Asaka
,
K.
, and
Yoshizaki
,
R.
, 2005, “
Measurement of the Atomic Mechanics of Single Crystalline Silicon Wires of Nanometer Width
,”
Phys. Rev. B
0556-2805,
72
, p.
035333
.
30.
Li
,
X.
,
Ono
,
T.
,
Wang
,
Y.
, and
Esashi
,
M.
, 2003, “
Ultrathin Single-Crystalline-Silicon Cantilever Resonators: Fabrication Technology and Significant Specimen Size Effect on Young’s Modulus
,”
Appl. Phys. Lett.
0003-6951,
83
(
15
), pp.
3081
3083
.
31.
Wang
,
G. F.
, and
Feng
,
X. Q.
, 2009, “
Surface Effects on Buckling of Nanowire Under Uniaxial Compression
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
141913
.
You do not currently have access to this content.