Without employing ad hoc assumptions, various equations and solutions for plane problems of one-dimensional quasicrystals are deduced systematically. A method for the exact solution of three-dimensional equations is presented under homogeneous and nonhomogeneous boundary conditions. The equations and solutions are used to construct the refined theory of thick plates for both an in-plane extensional deformation regime and a normal or shear surface loading. With this method, the refined theory can now be explicitly established from the general solution of quasicrystals and the Lur’e method. In two illustrative examples of infinite plates with a circular hole, it is shown that explicit expressions of analytical solutions can be obtained by using the refined theory.

References

1.
Stadnik
,
Z.
, 1999,
Physical Properties of Quasicrystals
(Springer Series in Solid State Sciences)
,
Springer
,
Berlin
.
2.
Hu
,
A.
,
Tien
,
C.
,
Li
,
X. J.
,
Wang
,
Y. H.
, and
Feng
,
D.
, 1986, “
X-Ray Diffraction Pattern of Quasi-Periodic (Fibonacci) Nb-Cu Superlattice
,”
Phys. Lett. A
,
119
, pp.
313
314
.
3.
Merlin
,
R.
,
Bajema
,
K.
,
Clarke
,
R.
,
Juang
,
F. Y.
, and
Bhattacharya
,
P. K.
, 1985, “
Quasiperiodic GaAs-AlAs Heterostructures
,”
Phys. Rev. Lett.
,
55
, pp.
1768
1770
.
4.
Teranchi
,
H.
,
Noda
,
Y.
,
Kamigaki
,
K.
,
Matsunaka
,
S.
,
Nakayama
,
M.
,
Kato
,
H.
,
Sano
,
N.
, and
Yamada
,
Y.
, 1988, “
X-Ray Diffraction Patterns of Configuration Fibonacci Lattice
,”
J. Phys. Soc. Jpn.
,
17
, pp.
2416
2424
.
5.
Levine
,
D.
, and
Steinhardt
,
P. J.
, 1986, “
Quasicrystals. 1. Definition and Structure
,”
Phys. Rev. B
,
34
(
2
), pp.
596
616
.
6.
Kramer
,
P.
, and
Neri
,
R.
, 1984, “
On Periodic and Non-Periodic Space Fillings Obtained by Projection
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
,
40
, pp.
580
587
.
7.
Wang
,
R. H.
,
Yang
,
W. G.
,
Hu
,
C. Z.
, and
Ding
,
D. H.
, 1997, “
Point and Space Groups and Eelastic Behaviours of One-Dimensional Quasicrystals
,”
J. Phys.: Condens. Matter
,
9
(
11
), pp.
2411
2422
.
8.
Cheng
,
S.
, 1979, “
Elasticity Theory of Plates and a Refined Theory
,”
ASME J. Appl. Mech.
,
46
, pp.
644
650
.
9.
Gao
,
Y.
, and
Ricoeur
,
A.
, 2011,
“The Refined Theory of One-Dimensional Quasicrystals in Thick Plate Structures,”
ASME J. Appl. Mech.
,
78
(
3
), p.
031021
.
10.
Lur’e
,
A. I.
, 1964,
Three-Dimensional Problems of the Theory of Elasticity
,
Wiley Interscience
,
New York
.
11.
Jaric
,
M. V.
, and
Nelson
,
D. R.
, 1988, “
Diffuse Scattering from Quasicrystals
,”
Phys. Rev. B
,
37
(
9
), pp.
4458
4472
.
12.
Deboissieu
,
M.
,
Boudard
,
M.
,
Hennion
,
B.
,
Bellissent
,
R.
,
Kycia
,
S.
,
Goldman
,
A.
,
Janot
,
C.
, and
Audier
,
M.
, 1995, “
Diffuse Scattering and Phason Elasticity in the AlPdMn Icosahedral Phase
,”
Phys. Rev. Lett.
,
75
(
1
), pp.
89
92
.
13.
Gao
,
Y.
,
Xu
,
S. P.
, and
Zhao
,
B. S.
, 2008, “
A Theory of General Solutions of 3D Problems in 1D Hexagonal Quasicrystals
,”
Phys. Scr.
,
77
(
1
),
p.
015601
.
14.
Wang
,
W.
, and
Shi
,
M. X.
, 1997, “
Thick Plate Theory Based on General Solutions of Elasticity
,”
Acta Mech.
,
123
(
1–4
), pp.
27
36
.
15.
Cheng
,
S.
, 1977, “
A Method for Solving Boundary Value Problems and Two Dimensional Theories Without Ad Hoc Assumptions
,”
J. Elasticity
,
7
, pp.
329
335
.
16.
Timoshenko
,
S. P.
, and
Goodier
,
J. C.
, 1970,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
17.
Sadd
,
M. H.
, 2005,
Elasticity: Theory, Applications, and Numerics
,
Butterworth–Heinemann
,
Burlington, VT
.
You do not currently have access to this content.