Deformation of granular materials is often characterized by strain localization in the form of shear bands, which exhibit a characteristic width of about 10–20 particle diameters. Much of the relative motion of particles within a shear band is accompanied by rolling, as opposed to sliding, since the latter requires more dissipative work. However, in a densely packed assembly, rolling cannot be accomplished without some sliding. This dissipative constraint implies a characteristic rotation transmission distance, i.e., the distance to which the information about rotation of a particle propagates. Here, we use the discrete element method to investigate this length and its directional dependence as function of the force chain network. We found that the rotation transmission distance correlates with the shear band width observed in experiments and previous numerical simulations. It is strongly dependent on the particle size distribution and the coefficient of interparticle friction, and weakly dependent on pressure. Moreover, the transmission of rotations is strongly directionally dependent following the pattern of force chains. To describe this dependence, we define a nonlocal tensorial description of force chain directionality.

References

1.
Rechenmacher
,
A. L.
, 2006, “
Grain-Scale Processes Governing Shear Band Initiation and Evolution in Sands
,”
J. Mech. Phys. Solids
,
54
, pp.
22
45
.
2.
Finno
,
R. J.
,
Harris
,
W. W.
,
Mooney
,
M. A.
, and
Viggiani
G.
, 1997, “
Shear Bands in Plane Strain Compression of Loose Sand
,”
Geotechnique
,
47
(
1
), pp.
149
165
.
3.
Liang
,
L.
,
Saada
,
A.
,
Figueroa
,
J. L.
, and
Cope
,
C. T.
, 1997, “
The Use of Digital Image Processing in Monitoring Shear Band Development
,”
ASTM Geotech. Test. J.
,
20
(
3
), pp.
324
339
.
4.
Rechenmacher
,
A. L.
, and
Finno
R. J.
, 2004, “
Digital Image Correlation to Evaluate Shear Banding in Dilative Sands
,”
ASTM Geotech. Test. J.
,
27
(
1
), pp.
13
22
.
5.
Hall
,
S. A.
,
Bornert
,
M.
,
Desrues
,
J.
,
Pannier
,
Y.
,
Lenoir
,
N.
,
Viggiani
,
G.
, and
Besuelle
,
P.
, 2010, “
Discrete and Continuum Analysis of Localised Deformation in Sand Using X-Ray μCT and Volumetric Digital Image Correlation
,”
Geotechnique
,
60
(
5
), pp.
315
322
.
6.
Kuhn
M. R.
, and
Bagi
,
K.
, 2004, “
Contact Rolling and Deformation in Granular Media
,”
Int. J. Solids Struct.
,
41
, pp.
5793
5820
.
7.
Kuhn
,
M. R.
, 1999, “
Structured Deformation in Granular Materials
,”
Mech. Mater.
,
31
, pp.
407
429
.
8.
Drescher
,
A.
, and
DeJosselin DeJong
,
G.
, 1972, “
Photoelastic Verification of a Mechanical Model for the Flow of a Granular Material
,”
J. Mech. Phys. Solids
,
20
, pp.
337
351
.
9.
Radjai
,
F.
,
Jean
,
M.
,
Moreau
J.-J.
, and
Roux
,
S.
, 1996, “
Force Distribution in Dense Two-Dimensional Granular Systems
,”
Phys. Rev. Lett.
,
77
(
2
), pp.
274
277
.
10.
Oda
,
M.
, and
Kazama
,
H.
, 1998, “
Microstructure of Shear Bands and its Relation to the Mechanisms of Dilatancy and Failure of Dense Granular Soils
,”
Geotechnique
,
48
, pp.
465
481
.
11.
Oda
,
M.
,
Takemura
,
T.
, and
Takahashi
,
M.
, 2004, “
Microstructure in Shear Band Observed by Microfocus X-Ray Computed Tomography
,”
Geotechnique
,
54
, pp.
539
542
.
12.
Tordesillas
A.
, 2007, “
Force Chain Buckling, Unjamming Transitions and Shear Banding in Dense Granular Assemblies
,”
Philos. Mag.
,
87
(
32
), pp.
4987
5016
.
13.
Tordesillas
,
A.
, and
Muthuswamy
,
M.
, 2009, “
On the Modeling of Confined Buckling of Force Chains
,”
J. Mech. Phys. Solids.
,
57
, pp.
706
727
.
14.
Hunt
,
G. W.
,
Tordesillas
,
A.
,
Green
,
S. C.
, and
Shi
,
J.
, 2010, “
Force-Chain Buckling in Granular Media: A Structural Mechanics Perspective
,”
Philos. Trans. R. Soc. A
,
368
, pp.
249
262
.
15.
Tordesillas
,
A.
,
Shi
,
J.
, and
Tshaikiwsky
,
T.
, 2011, “
Stress–Dilatancy and Force Chain Evolution
,”
Int. J. Numer. Anal. Methods Geomech.
,
35
(
2
), pp.
264
292
.
16.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
, 1979, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
, pp.
47
65
.
17.
Mesarovic
,
S. Dj.
, and
Padbidri
,
J.
, 2005, “
Minimal Kinematic Boundary Conditions for Simulations of Disordered Microstructures
,”
Philos. Mag.
,
85
(
1
), pp.
65
78
.
18.
Mesarovic
,
S. Dj.
, and
Padbidri
,
J.
, 2008, “
Transition Between the Models in Multiscale Simulations: Continuum and Network Models
,”
Proceedings of CP973. Multi-Scale and Functionally Graded Materials
, 2006,
G. H.
Paulino
,
M.-J.
Pindera
R. H.
Dodds
, Jr.
,
F. A.
Rochinha
,
E. V.
Dave
, and
L.
Chen
, eds.,
American Institute of Physics
,
College Park, MD
, pp.
171
177
.
19.
Hu
N.
, and
Molinari
,
J. F.
, 2004, “
Shear Bands in Dense Metallic Granular Materials
,”
J. Mech. Phys. Solids
,
52
, pp.
499
531
.
20.
Brilliantov
,
N. V.
,
Spahn
,
F.
,
Hertzsch
J. M.
, and
Poschel
,
T.
, 1996, “
Model for Collisions in Granular Gases
,”
Phys. Rev. E
,
53
(
5
), pp.
5382
5392
.
21.
Padbidri
,
J. M.
, and
Mesarovic
,
S. Dj.
, 2011, “
Acceleration of DEM Algorithm for Quasistatic Processes
,”
Int. J. Numer. Methods Eng.
,
86
(
7
), pp.
816
828
.
22.
Satake
,
M.
, 1982,
Fabric Tensor in Granular Materials
,”
Proceedings of the IUTAM Conference on Deformation and Failure Of Granular Materials
, Delft, The Netherlands, pp.
63
68
.
23.
Iwashita
,
K.
, and
Oda
,
M.
, 2000, “
Micro-Deformation Mechanism of Shear Banding Process Based on Modified Distinct Element Method
,”
Powder Technol.
,
109
, pp.
192
205
.
24.
Bardet
,
J. P.
, and
Proubet
,
J.
, 1991, “
A Numerical Investigation of the Structure of Persistent Shear Bands in Granular Media
,”
Geotechnique
,
41
(
4
), pp.
599
613
.
25.
Tordesillas
,
A.
,
Muthuswamy
,
M.
, and
Walsh
,
S. D. C.
, 2008, “
Mesoscale Measures of Nonaffine Deformation in Dense Granular Assemblies
,”
J. Eng. Mech.
,
134
(
12
), pp.
1095
1113
.
26.
Allonso-Marroquin
,
F.
,
Vardoulakis
,
I.
,
Hermann
,
H. J.
,
Weatherley
,
D.
, and
Mora
,
P.
, 2006, “
Effect on Rolling on Dissipation in Fault Gauges
,”
Phys. Rev. E
,
74
, p.
0313066
.
27.
Radjai
,
F.
, and
Roux
,
S.
, 2002, “
Turbulentlike Fluctuations in Quasistatic Flow of Granular Media
,”
Phys. Rev. Lett.
,
89
(
6
), p.
064302
.
You do not currently have access to this content.