The porochemoelectroelastic analytical models have been used to describe the response of chemically active and electrically charged saturated porous media such as clay soils, shales, and biological tissues. However, existing studies have ignored the anisotropic nature commonly observed on these porous media. In this work, the anisotropic porochemoelectroelastic theory is presented. Then, the solution for an inclined wellbore drilled in transversely isotropic shale formations subjected to anisotropic far-field stresses with time-dependent down-hole fluid pressure and fluid activity is derived. Numerical examples illustrating the combined effects of porochemoelectroelastic behavior and anisotropy on wellbore responses are also included. The analysis shows that ignoring either the porochemoelectroelastic effects or the formation anisotropy leads to inaccurate prediction of the near-wellbore pore pressure and effective stress distributions. Finally, wellbore responses during a leak-off test conducted soon after drilling are analyzed to demonstrate the versatility of the solution in simulating complex down-hole conditions.

References

1.
Abousleiman
,
Y. N.
,
Hoang
,
S. K.
, and
Tran
,
M.H.
,
2010
, “
Mechanical Characterization of Small Shale Samples Subjected to Fluid Exposure Using the Inclined Direct Shear Testing Device
Int. J. Rock Mech. Min. Sci.
,
47
, pp.
335
367
.10.1016/j.ijrmms.2009.12.014
2.
Hemphill
,
T.
,
Duran
,
W.
,
Abousleiman
,
Y. N.
,
Nguyen
,
V. X.
,
Tran
,
M. H.
, and
Hoang
,
S.K.
,
2010
, “
Changing the Safe Drilling Window With Invert Emulsion Drilling Fluids: Advanced Wellbore Stability Modeling Using Experimental Results
Proceedings of the 2010 CPS/SPE International Oil & Gas Conference and Exhibition
,
Beijing, China
, June 8–10, SPE Paper No. 132207.10.2118/132207-MS
3.
Lu
,
X. L.
,
Mow
,
V. C.
, and
Guo
,
X. E.
,
2009
, “
Proteoglycans and Mechanical Behavior of Condylar Cartilage
,”
J. Dent. Res.
,
88
, pp.
244
248
.10.1177/0022034508330432
4.
Katchalsky
,
A.
, and
Curran
,
P. F.
,
1967
,
Nonequilibrium Thermodynamics in Biophysics
,
Harvard University Press
,
Cambridge, MA
.
5.
Neuzil
,
C. E.
,
2000
, “
Osmotic Generation of Anomalous Fluid Pressures in Geological Environments
Nature
,
403
, pp.
182
184
.10.1038/35003174
6.
Olsen
,
H. W.
,
1969
, “
Simultaneous Fluxes of Liquid and Charge in Saturated Kaolinite
,”
Soil Sci. Soc. Am. Proc.
,
33
, pp.
338
344
.10.2136/sssaj1969.03615995003300030006x
7.
Yeung
,
A. T.
, and
Mitchell
,
J. K.
,
1993
, “
Coupled Fluid, Electrical and Chemical Flows in Soil
,”
Geotechnique
,
43
, pp.
121
134
.10.1680/geot.1993.43.1.121
8.
Shackelford
,
C. D.
, and
Daniel
,
D. E.
,
1991
, “
Diffusion in Saturated Soil. I: Background
,”
J. Geotech. Eng.
,
117
, pp.
467
484
.10.1061/(ASCE)0733-9410(1991)117:3(467)
9.
Sherwood
,
J. D.
, and
Bailey
,
L.
,
1994
, “
Swelling Shale Around a Cylindrical Wellbore
,”
Proc. R. Soc. Lond. A
,
444
, pp.
161
184
.10.1098/rspa.1994.0010
10.
Ekbote
,
S.
, and
Abousleiman
,
Y. N.
,
2006
, “
Porochemoelastic Solution for an Inclined Borehole in a Transversely Isotropic Formation
,”
J. Eng. Mech.
,
132
(
7
), pp.
754
763
.10.1061/(ASCE)0733-9399(2006)132:7(754)
11.
Nguyen
,
V. X.
, and
Abousleiman
,
Y. N.
,
2010
, “
Incorporating Electrokinetic Effects in the Porochemoelastic Inclined Wellbore Formulation and Solution
Ann. Braz. Acad. Sci.
,
82
(
1
), pp.
195
222
.10.1590/S0001-37652010000100015
12.
Nguyen
,
V. X.
,
Abousleiman
,
Y. N.
, and
Hoang
,
S. K.
,
2009
, “
Analyses of Wellbore Instability in Drilling Through Chemically Active Fractured Rock Formations
SPEJ
,
14
, pp.
283
301
.10.2118/105383-PA
13.
Cowin
,
S. C.
, and
Mehrabadi
,
M. M.
,
2007
, “
Compressible and Incompressible Constituents in Anisotropic Poroelasticity
,”
J. Mech. Phys. Solids
,
55
, pp.
161
193
.10.1016/j.jmps.2006.04.012
14.
Iyo
,
T.
,
Maki
,
Y.
,
Sasaki
,
N.
, and
Nakata
,
M.
,
2004
, “
Anisotropic Viscoelastic Properties of Cortical Bones
,”
J. Biomech.
,
37
, pp.
1433
1437
.10.1016/j.jbiomech.2003.12.023
15.
Jin
,
H.
, and
Lewis
,
J. L.
,
2004
, “
Determination of Poisson's Ratio of Articular Cartilage by Indentation Using Different-Sized Indenters
,”
J. Biomech. Eng.
,
126
, pp.
138
145
.10.1115/1.1688772
16.
Thomsen
,
L
.,
1986
, “
Weak Elastic Anisotropy
,”
Geophysics
,
51
(
10
), pp.
1954
1966
.10.1190/1.1442051
17.
Johnston
,
J. E.
, and
Christensen
,
N. I.
,
1995
, “
Seismic Anisotropy of Shales
,”
J. Geophys. Res.
,
100
, pp.
5991
6003
.10.1029/95JB00031
18.
Abousleiman
,
Y. N.
,
Tran
,
M. H.
,
Hoang
,
S. K.
,
Bobko
,
C.
,
Ortega
,
J. A.
, and
Ulm
,
F.-J.
,
2007
, “
Geomechanics Field and Lab Characterization of Woodford Shale: The Next Gas Play
,”
Proceedings of the 2007 SPE Annual Technical Conference and Exhibition
,
Anaheim, CA
, November 11–14, SPE Paper No. 110120.10.2118/110120-MS
19.
Abousleiman
,
Y. N.
, and
Cui
,
L.
,
1998
, “
Poroelastic Solution in Transversely Isotropic Media for Wellbore and Cylinder
,”
Int. J. Solids Struct.
,
35
, pp.
4905
4929
.10.1016/S0020-7683(98)00101-2
20.
Coussy
,
O.
,
2004
,
Poromechanics
,
John Wiley & Sons
,
Chichester, UK
.
21.
Wang
,
H. F.
,
2000
,
Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrology
,
Princeton University Press
,
Princeton, NJ
.
22.
Cui
,
L.
,
Cheng
,
A. H.-D.
, and
Abousleiman
,
Y. N.
,
1997
, “
Poroelastic Solution of an Inclined Borehole
,”
ASME J. Appl. Mech.
,
64
, pp.
32
38
.10.1115/1.2787291
23.
Overbeek
,
J. Th. G.
,
1956
, “
The Donnan Equilibrium
,”
Prog. Biophys.
,
6
, pp.
57
84
.
24.
Carter
,
J. P.
, and
Booker
,
J. R.
,
1982
, “
Elastic Consolidation Around a Deep Circular Tunnel
,”
Int. J. Solids Struct.
,
18
, pp.
1059
1074
.10.1016/0020-7683(82)90093-2
25.
Stehfest
,
H
.,
1970
, “
Numerical Inversion of Laplace Transform
,”
Commun. ACM
,
13
, pp.
47
49
.10.1145/361953.361969
26.
Abousleiman
,
Y. N.
,
Cheng
,
A. H.-D.
,
Cui
,
L.
,
Detournay
,
E.
, and
Roegiers
,
J.-C.
,
1996
, “
Mandel's Problem Revisited
,”
Geotechnique
,
42
, pp.
187
195
.10.1680/geot.1996.46.2.187
You do not currently have access to this content.