A physically meaningful analytical (mathematical) model is developed for the prediction of the interfacial shearing thermal stress in an assembly comprised of two identical components, which are subjected to different temperatures. The bonding system is comprised of a plurality of identical columnlike supports located at equal distances (spaces) from each other. The model is developed in application to a thermoelectric module (TEM) design where bonding is provided by multiple thermoelectric material supports (legs). We show that thinner (dimension in the horizontal direction) and longer (dimension in the vertical direction) TEM legs could result in a significant stress relief, and that such a relief could be achieved even if shorter legs are employed, as long as they are thin and the spacing between them is significant. It is imperative, of course, that if thin legs are employed for lower stresses, there is still enough interfacial “real estate,” so that the adhesive strength of the assembly is not compromised. On the other hand, owing to a lower stress level in an assembly with thin legs and large spacing, assurance of its interfacial strength is less of a challenge than for a conventional assembly with stiff, thick, and closely positioned legs. We show also that the thermal stresses not only in conventional TEM designs (using Be2Te3 as the thermoelectric material, and Sn-Sb solder), but also in the future high-power (and high operating temperatures) TEM design (using Si or SiGe as the thermoelectric material and Gold100 as the appropriate solder), might be low enough, so that the short- and long-term reliability of the TEM structure could still be assured. We have found, however, that thin-and-long legs should be considered for lower stresses, but not to an extent that appreciable bending deformations of the legs become possible. Future work will include, but might not be limited to, the finite-element computations and to experimental evaluations (e.g., shear-off testing) of the stress-at-failure for the TEMs of interest.

References

1.
Lang
,
G. A.
,
Fehder
,
B. J.
, and
Williams
,
W. D.
,
1970
, “
Thermal Fatigue in Silicon Power Transistors
,”
IEEE Trans. Electron Dev.
,
17
(9)
, pp.
737
793
. 10.1109/T-ED.1970.17074
2.
J. H.
Lau
, ed.,
1993
,
Thermal Stress and Strain in Microelectronics Packaging
,
Van-Nostrand Reinhold
,
New York
.
3.
Bar-Cohen
,
A.
, and
Witzman
,
S.
,
1995
, “
Thermally-Induced Failures in Electronic Equipment—Field Reliability Modeling
,”
Int. J. Microelectron. Packaging
,
1
, pp.
1
7
.
4.
Zeyfang
,
R.
,
1971
, “
Stresses and Strains in a Plate Bonded to a Substrate: Semiconductor Devices
,”
Solid State Electron.
,
14
(10)
, pp.
1035
1039
. 10.1016/0038-1101(71)90172-9
5.
Hokanson
,
K. E.
, and
Bar-Cohen
,
A.
,
1995
, “
A Shear-Based Optimization of Adhesive Thickness for Die Bonding
,”
IEEE Trans. Components Packag. Manuf. Technol. Part A
,
18
(
3
), pp.
578
584
. 10.1109/95.465155
6.
Driessen
,
A.
,
Baets
,
R. G.
,
McInerney
,
J. G.
, and
Suhir
,
E.
, eds.,
2003
,
Volume 4947: Laser Diodes, Optoelectronic Devices, and Heterogeneous Integration
, Proceedings SPIE, Brugge, Belgium, October 28.
7.
Suhir
,
E.
,
2009
, “
Thermal Stress in a Bi-Material Assembly With a ‘Piecewise-Continuous’ Bonding Layer: Theorem of Three Axial Forces
,”
J. Phys. D Appl. Phys.
,
42
(4)
, p.
045507
. 10.1088/0022-3727/42/4/045507
8.
Suhir
,
E.
,
2009
, “
On a Paradoxical Situation Related to Bonded Joints: Could Stiffer Mid-Portions of a Compliant Attachment Result in Lower Thermal Stress?
,”
J. Solid Mech. Mater. Eng.
,
3
(
8
), pp.
990
997
. 10.1299/jmmp.3.990
9.
Suhir
,
E.
,
2001
, “
Predicted Thermal Stresses in a Bimaterial Assembly Adhesively Bonded at the Ends
,”
J. Appl. Phys.
,
89
(
1
), pp.
120
129
. 10.1063/1.1331655
10.
Suhir
,
E.
,
2003
, “
Bimaterial Assembly With a Low Modulus Bonding Layer at the Ends
,”
J. Appl. Phys.
,
93
, p.
3657
. 10.1063/1.1555254
11.
Suhir
,
E.
,
1995
, “
‘Global’ and ‘Local’ Thermal Mismatch Stresses in an Elongated Bi-Material Assembly Bonded at the Ends
,”
E.
Suhir
, ed.,
Structural Analysis in Microelectronic and Fiber-Optic Systems, Symposium Proceedings
,
ASME Press
,
New York
.
12.
Schen
,
M.
,
Abe
,
H.
, and
Suhir
,
E.
,
1994
, “
Thermal and Mechanical Behavior and Modeling
,”
ASME, AMD-Vol, New York
.
13.
Suhir
,
E.
,
1986
, “
Stresses in Bi-Metal Thermostats
,”
ASME J. Appl. Mech.
,
53
(
3
), pp.
657
660
. 10.1115/1.3171827
14.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bimetal Thermostats
,”
ASME J. Appl. Mech.
,
56
(
3
), pp.
595
600
. 10.1115/1.3176133
15.
Kuo
,
A.-Y.
,
1989
, “
Thermal Stresses at the Edge of a Bimetallic Thermostat
,”
ASME J. Appl. Mech.
,
56
(3)
, pp.
585
589
. 10.1115/1.3176131
16.
Eischen
,
J. W.
,
Chung
,
C.
, and
Kim
,
J. H.
,
1990
, “
Realistic Modeling of Edge Effect Stresses in Bimaterial Elements
,”
ASME J. Electron. Packaging
,
112
(
1
), pp.
16
23
. 10.1115/1.2904333
17.
Min
,
G.
, and
Rowe
,
D. M.
,
1999
, “
A Novel Thermoelectric Converter Employing Fermi Gas/ Liquid Interfaces
,”
J. Phys. D Appl. Phys.
,
32
, p.
L26
.10.1088/0022-3727/32/6/002
18.
Clin
,
T. H.
,
Turenne
,
S.
,
Vasilevskiy
,
D.
, and
Masut
,
R. A.
,
2009
, “
Numerical Simulation of the Thermomechanical Behavior of Extruded Bismuth Telluride Alloy Module
,”
J. Electron. Mater.
,
38
(
7
), pp.
994
1001
10.1007/s11664-009-0756-9.
19.
Yazawa
,
K.
, and
Shakouri
,
A.
,
2010
, “
Cost-Efficiency Trade-Off and the Design of Thermoelectric Power Generators
,”
Environ. Sci. Technol.
,
45
(17)
, pp.
7548
7553
. 10.1021/es2005418
20.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(5895)
, pp.
1457
1461
. 10.1126/science.1158899
21.
Leonov
,
V.
, and
Vullers
,
R. J. M.
,
2009
, “
Wearable Thermoelectric Generators for Body-Powered Devices
,”
J. Electron. Mater.
,
38
(
7
), pp.
1491
1498
10.1007/s11664-008-0638-6.
22.
Yazawa
,
K.
,
Solbrekken
,
G. L.
, and
Bar-Cohen
,
A.
,
2005
, “
Thermoelectric-Powered Convective Cooling of Microprocessors
,”
IEEE Trans. Adv. Packaging
,
28
(
2
), pp.
231
239
. 10.1109/TADVP.2005.846854
23.
Fukutani
,
K.
, and
Shakouri
,
A.
,
2006
, “
Design of Bulk Thermoelectric Modules for Integrated Circuit Thermal Management
,”
IEEE Trans. Compon. Packaging Technol.
,
29
(
4
), pp.
750
757
10.1109/TCAPT.2006.885938.
24.
Mayer
,
P. M.
, and
Ram
,
R. J.
,
2006
, “
Optimization of Heat Sink-Limited Thermoelectric Generators
,”
Nanoscale Microscale Thermophys. Eng.
,
10
(2)
, pp.
143
155
. 10.1080/10893950600643063
25.
Stevens
,
J. W.
,
2001
, “
Optimum Design of Small ΔT Thermoelectric Generation Systems
,”
Energy Convers. Manage.
,
42
(6)
, pp.
709
720
. 10.1016/S0196-8904(00)00099-6
26.
Kraemer
,
D.
,
Poudel
,
B.
,
Feng
,
H.-P.
,
Caylor
,
J. C.
,
Yu
,
B.
,
Yan
,
X.
,
Ma
,
Y.
,
Wang
,
X.
,
Wang
,
D.
,
Muto
,
A.
,
McEnaney
,
K.
,
Chiesa
,
M.
,
Ren
,
Z.
, and
Chen
,
G.
,
2011
, “
High-Performance Flat-Panel Solar Thermoelectric Generators With High Thermal Concentration
,”
Nat. Mater.
,
10
, pp.
532
538
. 10.1038/nmat3013
27.
Gao
,
J.-L.
,
Du
,
Q.-G.
,
Zhang
,
X.-D.
, and
Jiang
,
X.-Q.
,
2011
, “
Thermal Stress Analysis and Structure Parameter Selection for a Be2Te3-Based Thermoelectric Module
,”
J. Electron. Mater.
,
40
(
5
), pp.
884
888
. 10.1007/s11664-011-1611-3
28.
Antonova
,
E. E.
, and
Looman
,
D. C.
,
2005
, “
Finite Elements for Thermoelectric Device Analysis
,”
24th International Conference on Thermoelectrics (ICT 2005)
, Clemson, SC, June 19–23, pp.
215
218
10.1109/ICT.2005.1519922.
29.
Suhir
,
E.
, and
Shakouri
,
A.
,
2012
, “
Assembly Bonded at the Ends: Could Thinner and Longer Legs Result in a Lower Thermal Stress in a Thermoelectric Module (TEM) Design?
,”
ASME J. Appl. Mech.
,
79
(
6
), p.
061010
. 10.1115/1.4006597
You do not currently have access to this content.