This paper is concerned with a solid shell finite element formulation to simulate the behavior of thin dielectric elastomer structures. Dielectric elastomers belong to the group of electroactive polymers. Due to efficient electromechanical coupling and the huge actuation strain, they are very interesting for actuator applications. The coupling effect in the material is mainly caused by polarization. In the present work, a simple constitutive relation, which is based on an elastic model involving one additional material constant to describe the polarization state, is incorporated in a solid shell formulation. It is based on a mixed variational principle of Hu-Washizu type. Thus, for quasi-stationary fields, the balance of linear momentum and Gauss' law are fulfilled in a weak sense. As independent fields, the displacements, electric potential, strains, electric field, mechanical stresses, and dielectric displacements are employed. The element has eight nodes with four nodal degrees of freedom, three mechanical displacements, and the electric potential. The surface oriented shell element models the bottom and the top surfaces of a thin structure. This allows for a simple modeling of layered structures by stacking the elements through the thickness. Some examples are presented to demonstrate the ability of the proposed formulation.

References

1.
Pelrine
,
R.
,
Kornbluh
,
R.
, and
Joseph
,
J.
,
1998
, “
Electrostriction of Polymer Dielectrics With Compliant Electrodes as a Means of Actuation
,”
Sens. Actuators, A
,
64
(
1
), pp.
77
85
.10.1016/S0924-4247(97)01657-9
2.
Bar-Cohen
,
Y.
,
2004
,
Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges
,
SPIE—Society of Photographic Instrumentation Engineers
,
Bellingham, WA
.
3.
Kim
,
K.
, and
Tadokoro
,
S.
,
2007
,
Electroactive Polymers for Robotic Applications: Artificial Muscles and Sensors
,
Springer
,
New York
.
4.
Wissler
,
M.
, and
Mazza
,
E.
,
2005
, “
Modeling and Simulation of Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1396
1402
.10.1088/0964-1726/14/6/032
5.
Wissler
,
M.
, and
Mazza
,
E.
,
2007
, “
Mechanical Behavior of an Acrylic Elastomer Used in Dielectric Elastomer Actuators
,”
Sens. Actuators
, A,
134
(
2
), pp.
494
504
.10.1016/j.sna.2006.05.024
6.
Rosset
,
S.
,
Dubois
,
P.
,
Niklaus
,
M.
, and
Shea
,
H.
,
2009
, “
Large Stroke Miniaturized Dielectric Elastomer Actuators
,”
Proceedings of the 15th IEEE International Conference on Solid-State Sensors
, Actuators and Microsystems. Transducers 2009, Denver, CO, June 21–25,
IEEE
, pp.
2401
2404
.10.1109/SENSOR.2009.5285428
7.
Kovacs
,
G.
,
Duering
,
L.
,
Michel
,
S.
, and
Terrasi
,
G.
,
2009
, “
Stacked Dielectric Elastomer Actuator for Tensile Force Transmission
,”
Sens. Actuators
, A,
155
(
2
), pp.
299
307
.10.1016/j.sna.2009.08.027
8.
McMeeking
,
R.
, and
Landis
,
C.
,
2005
, “
Electrostatic Forces and Stored Energy for Deformable Dielectric Materials
,”
Trans. ASME J. Appl. Mech.
,
72
(
4
), pp.
581
590
.10.1115/1.1940661
9.
Steigmann
,
D. J.
,
2009
, “
On the Formulation of Balance Laws for Electromagnetic Continua
,”
Math. Mech. Solids
,
14
(
4
), pp.
390
402
.10.1177/1081286507080808
10.
Eringen
,
A.
, and
Maugin
,
G.
,
1990
,
Electrodynamics of Continua I:, Foundations and Solid Media
,
Springer
,
New York
.
11.
Dorfmann
,
A.
, and
Ogden
,
R.
,
2005
, “
Nonlinear Electroelasticity
,”
Acta Mech.
,
174
(
3–4
), pp.
167
183
.10.1007/s00707-004-0202-2
12.
Vu
,
D.
,
Steinmann
,
P.
, and
Possart
,
G.
,
2007
, “
Numerical Modelling of Non-Linear Electroelasticity
,”
Int. J. Numer. Methods Eng.
,
70
(
6
), pp.
685
704
.10.1002/nme.1902
13.
Mueller
,
R.
,
Xu
,
B. X.
,
Gross
,
D.
,
Lyschik
,
M.
,
Schrade
,
D.
, and
Klinkel
,
S.
,
2010
, “
Deformable Dielectrics—Optimization of Heterogeneities
,”
Int. J. Eng. Sci.
,
48
(
7–8
), pp.
647
657
.10.1016/j.ijengsci.2010.03.001
14.
O'Brien
,
B.
,
McKay
,
T.
,
Calius
,
E.
,
Xie
,
S.
, and
Anderson
,
I.
,
2009
, “
Finite Element Modelling of Dielectric Elastomer Minimum Energy Structures
,”
Appl. Phys. A
,
94
(
3
), pp.
507
514
.10.1007/s00339-008-4946-8
15.
Zhao
,
X.
, and
Suo
,
Z.
,
2008
, “
Method to Analyze Programmable Deformation of Dielectric Elastomer Layers
,”
Appl. Phys. Lett.
,
93
(
25
), p.
251902
.10.1063/1.3054159
16.
Klinkel
,
S.
, and
Wagner
,
W.
,
2006
, “
A Geometrically Non-Linear Piezoelectric Solid Shell Element Based on a Mixed Multi-Field Variational Formulation
,”
IInt. J. Numer. Methods Eng.
,
65
(
3
), pp.
349
382
.10.1002/nme.1447
17.
Maugin
,
G.
,
1988
, “
Continuum Mechanics of Electromagnetic Solids
,”
Applied Mathematics and Mechanics
,
J.
Achenbach
,
B.
Budiansky
,
W.
Koiter
,
H.
Lauwerier
, and
L.
Van Wijngaarden
, eds., Vol. 33,
North-Holland Series
,
Amsterdam
, pp.
1
598
.
18.
Ikeda
,
T.
,
1990
,
Fundamentals of Piezoelectricity
,
ORD University Press
,
Oxford
, UK.
19.
Ogden
,
R.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London
,
A326
, pp.
565
584
.10.1098/rspa.1972.0026
20.
Klinkel
,
S.
, and
Wagner
,
W.
,
2008
, “
A Piezoelectric Solid Shell Element Based on a Mixed Variational Formulation for Geometrically Linear and Nonlinear Applications
,”
Comput. Struct.
,
86
(
1–2
), pp.
38
46
.10.1016/j.compstruc.2007.05.032
21.
Taylor
,
R.
,
2011
,
FEAP—A Finite Element Analysis Program, Programmer Manual
,
University of California
,
Berkeley
, CA.
22.
Gao
,
Z.
,
Tuncer
,
A.
, and
Cuitiño
,
A.
,
2011
, “
Modeling and Simulation of the Coupled Mechanical-Electrical Response of Soft Solids
,”
Int. J. Plast.
,
27
(
10
), pp.
1459
1470
.10.1016/j.ijplas.2010.07.006
23.
Xu
,
B.
,
Müller
,
R.
,
Klassen
,
M.
, and
Gross
,
D.
,
2010
, “
On Electromechanical Stability Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
97
(
16
),
162908
.10.1063/1.3504702
24.
Lotz
,
P.
,
Matysek
,
M.
, and
Schlaak
,
H.
,
2009
, “
Peristaltic Pump Made of Dielectric Elastomer Actuators
,”
Proc. SPIE
,
7287
, Paper No. 72872D.10.1117/12.819216
You do not currently have access to this content.