An analytical model, validated by experiments and finite element simulations, is developed to study the thermal imaging of single-walled carbon nanotube (SWNT) devices by scanning Joule expansion microscopy (SJEM). A simple scaling law for thermal expansion at low frequencies, which only depends on two nondimensional geometric parameters, is established. Such a scaling law provides a simple way to determine the surface temperature distribution and power dissipation per unit length in an SWNT from the measured thermal expansion in experiments. The results suggest the spatial resolution of the SJEM measurement is as good as ∼50 nm.

References

1.
Avouris
,
P.
,
Chen
,
Z. H.
, and
Perebeinos
,
V.
,
2007
, “
Carbon-Based Electronics
,”
Nat. Nanotechnol.
,
2
, pp.
605
615
.10.1038/nnano.2007.300
2.
Franklin
,
A. D.
,
Luisier
,
M.
,
Han
,
S. J.
,
Tulevski
,
G.
,
Breslin
,
C. M.
,
Gignac
,
L.
,
Lundstrom
,
M. S.
, and
Haensch
,
W.
,
2012
, “
Sub-10 nm Carbon Nanotube Transistor
,”
Nano Lett.
,
12
, pp.
758
762
.10.1021/nl203701g
3.
Robertson
,
J.
,
2007
, “
Growth of Nanotubes for Electronics
,”
Mater. Today
,
10
, pp.
36
43
.10.1016/S1369-7021(06)71790-4
4.
Shi
,
L.
,
Plyasunov
,
S.
,
Bachtold
,
A.
,
McEuen
,
P. L.
,
Majumdar
,
A.
,
2000
, “
Scanning Thermal Microscopy of Carbon Nanotubes Using Batch-Fabricated Probes
,”
Appl. Phys. Lett.
,
77
, pp.
4295
4297
.10.1063/1.1334658
5.
Small
,
J. P.
,
Shi
,
L.
, and
Kim
,
P.
,
2003
, “
Mesoscopic Thermal and Thermoelectric Measurements of Individual Carbon Nanotubes
,”
Solid State Commun.
,
127
, pp.
181
186
.10.1016/S0038-1098(03)00341-7
6.
Jo
,
I.
,
Hsu
,
I. K.
,
Lee
,
Y. J.
,
Sadeghi
,
M. M.
,
Kim
,
S.
,
Cronin
,
S.
,
Tutuc
,
E.
,
Banerjee
,
S. K.
,
Yao
,
Z.
, and
Shi
,
L.
,
2011
, “
Low-Frequency Acoustic Phonon Temperature Distribution in Electrically Biased Graphene
,”
Nano Lett.
,
11
, pp.
85
90
.10.1021/nl102858c
7.
Yu
,
Y. J.
,
Han
,
M. Y.
,
Berciaud
,
S.
,
Georgescu
,
A. B.
,
Heinz
,
T. F.
,
Brus
,
L. E.
,
Kim
,
K. S.
, and
Kim
,
P.
,
2011
, “
High-Resolution Spatial Mapping of the Temperature Distribution of a Joule Self-Heated Graphene Nanoribbon
,”
Appl. Phys. Lett.
,
99
, p.
183105
.10.1063/1.3657515
8.
McConney
,
M. E.
,
Kulkarni
,
D. D.
,
Jiang
,
H.
,
Bunning
,
T. J.
, and
Tsukruk
,
V. V.
,
2012
, “
A New Twist on Scanning Thermal Microscopy
,”
Nano Lett.
,
12
, pp.
1218
1223
.10.1021/nl203531f
9.
Varesi
,
J.
, and
Majumdar
,
A.
,
1998
, “
Scanning Joule Expansion Microscopy at Nanometer Scales
,”
Appl. Phys. Lett.
,
72
, pp.
37
39
.10.1063/1.120638
10.
Majumdar
,
A.
, and
Varesi
,
J.
,
1998
, “
Nanoscale Temperature Distributions Measured by Scanning Joule Expansion Microscopy
,”
ASME Trans. J. Heat Transfer.
,
120
, pp.
297
305
.10.1115/1.2824245
11.
Xie
,
X.
,
Grosse
,
K. L.
,
Song
,
J.
,
Lu
,
C.
,
Dunham
,
S.
,
Du
,
F.
,
Islam
,
A. E.
,
Li
,
Y.
,
Zhang
,
Y.
,
Pop
,
E.
,
Huang
,
Y.
,
King
,
W. P.
, and
Rogers
,
J. A.
,
2012
, “
Quantitative Thermal Imaging of Single-Walled Carbon Nanotube Devices by Scanning Joule Expansion Microscopy
,”
ACS Nano
,
6
, pp.
10267
10275
.10.1021/nn304083a
12.
Gurrum
,
S. J.
,
Joshi
,
Y. K.
,
King
,
W. P.
, and
Ramakrishna
,
K.
,
2005
, “
Scanning Joule Expansion Microscopy of a Constriction in a Thin Metallic Film
,”
ASME J. Heat Transfer
,
127
, p.
809
.10.1115/1.2033315
13.
Grosse
,
K. L.
,
Bae
,
M. H.
,
Lian
,
F.
,
Pop
,
E.
, and
King
,
W. P.
,
2011
, “
Nanoscale Joule Heating, Peltier Cooling and Current Crowding in Graphene-Metal Contacts
,”
Nat. Nanotechnol.
,
6
, pp.
287
290
.10.1038/nnano.2011.39
14.
Blech
,
I.
, and
Cohen
,
U.
,
1982
, “
Effects of Humidity on Stress in Thin Silicon Dioxide Films
,”
J. Appl. Phys.
,
53
, pp.
4202
4207
.10.1063/1.331244
15.
Okada
,
Y.
, and
Tokumaru
,
Y.
,
1984
, “
Precise Determination of Lattice-Parameter and Thermal-Expansion Coefficient of Silicon Between 300 K and 1500 K
,”
J. Appl. Phys.
,
56
, pp.
314
320
.10.1063/1.333965
16.
Chou
,
S. Y.
, and
Krauss
,
P. R.
,
1997
, “
Imprint Lithography With Sub-10 nm Feature Size and High Throughput
,”
Microelectron. Eng.
,
35
, pp.
237
240
.10.1016/S0167-9317(96)00097-4
17.
Civelek
,
M. B.
,
1985
, “
Stress Intensity Factors for System of Cracks in an Infinite Strip
,”
Fracture Mechanics: Sixteenth Symposium, ASTM Spec. Tech. Publ.
,
868
, pp.
7
26
.
18.
Tsutsumi
,
N.
, and
Kiyotsukuri
,
T.
,
1988
, “
Measurement of Thermal-Diffusivity for Polymer Film by Flash Radiometry
,”
Appl. Phys. Lett.
,
52
, pp.
442
444
.10.1063/1.99437
19.
Assael
,
M. J.
,
Botsios
,
S.
,
Gialou
,
K.
, and
Metaxa
,
I. N.
,
2005
, “
Thermal Conductivity of Polymethyl Methacrylate (PMMA) and Borosilicate Crown Glass BK7
,”
Int. J. Thermophys.
,
26
, pp.
1595
1605
.10.1007/s10765-005-8106-5
20.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Process-Dependent Thermal Transport Properties of Silicon-Dioxide Films Deposited Using Low-Pressure Chemical Vapor Deposition
,”
J. Appl. Phys.
,
85
, pp.
7130
7134
.10.1063/1.370523
21.
Liu
,
W. J.
,
Etessam-Yazdani
,
K.
,
Hussin
,
R.
, and
Asheghi
,
M.
,
2006
, “
Modeling and Data for Thermal Conductivity of Ultrathin Single-Crystal SOI Layers at High Temperature
,”
IEEE Trans. Electron Devices
,
53
, pp.
1868
1876
.10.1109/TED.2006.877874
22.
Ishiyama
,
C.
, and
Higo
,
Y.
,
2002
, “
Effects of Humidity on Young's Modulus in Poly(Methyl Methacrylate)
,”
J. Polym. Sci., Part B: Polym. Phys.
,
40
, pp.
460
465
.10.1002/polb.10107
23.
Wu
,
W. L.
,
Vanzanten
,
J. H.
,
Orts
,
W. J.
,
1995
, “
Film Thickness Dependent Thermal-Expansion in Ultrathin Poly(Methyl Methacrylate) Films on Silicon
,”
Macromolecules
,
28
, pp.
771
774
.10.1021/ma00107a013
24.
Tada
,
H.
,
Kumpel
,
A. E.
,
Lathrop
,
R. E.
,
Slanina
,
J. B.
,
Nieva
,
P.
,
Zavracky
,
P.
,
Miaoulis
,
I. N.
, and
Wong
,
P. Y.
,
2000
, “
Thermal Expansion Coefficient of Polycrystalline Silicon and Silicon Dioxide Thin Films at High Temperatures
,”
J. Appl. Phys.
,
87
, pp.
4189
4193
.10.1063/1.373050
25.
Kim
,
M. T.
,
1996
, “
Influence of Substrates on the Elastic Reaction of Films for the Microindentation Tests
,”
Thin Solid Films
,
283
, pp.
12
16
.10.1016/0040-6090(95)08498-3
26.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1956
, “
Young's Modulus, Shear Modulus and Poisson's Ratio in Silicon and Germanium
,”
J. Appl. Phys.
,
36
, p.
153
.10.1063/1.1713863
You do not currently have access to this content.