A novel approximate analytical technique for determining the survival probability and first-passage probability density function (PDF) of nonlinear/hysteretic oscillators subject to evolutionary stochastic excitation is developed. Specifically, relying on a stochastic averaging/linearization treatment of the problem, approximate closed form expressions are derived for the oscillator nonstationary marginal, transition, and joint-response amplitude PDFs and, ultimately, for the time-dependent oscillator survival probability. The developed technique exhibits considerable versatility, as it can handle readily cases of oscillators exhibiting complex hysteretic behaviors as well as cases of evolutionary stochastic excitations with time-varying frequency contents. Further, it exhibits notable simplicity since, in essence, it requires only the solution of a first-order nonlinear ordinary differential equation (ODE) for the oscillator nonstationary response variance. Thus, the computational cost involved is kept at a minimum level. The classical hardening Duffing and the versatile Preisach (hysteretic) oscillators are considered in a numerical examples section, in which comparisons with pertinent Monte Carlo simulations data demonstrate the reliability of the proposed technique.

References

1.
Nason
,
G. P.
,
von Sachs
,
R.
, and
Kroisand
,
G.
,
2000
, “
Wavelet Processes and Adaptive Estimation of Evolutionary Wavelet Spectra
,”
J. R. Stat. Soc.
,
62
, pp.
271
292
.10.1111/1467-9868.00231
2.
Spanos
,
P. D.
, and
Kougioumtzoglou
,
I. A.
,
2012
, “
Harmonic Wavelets Based Statistical Linearization for Response Evolutionary Power Spectrum Determination
,”
Probab. Eng. Mech.
,
27
, pp.
57
68
.10.1016/j.probengmech.2011.05.008
3.
Priestley
,
M. B.
,
1965
, “
Evolutionary Spectra and Non-Stationary Processes
,”
J. R. Stat. Soc.
,
27
, pp.
204
237
.
4.
Dahlhaus
,
R.
,
1997
, “
Fitting Time Series Models to Non-Stationary Processes
,”
Ann. Stat.
,
25
, pp.
1
37
.10.1214/aos/1034276620
5.
Ombao
,
H.
,
Raz
,
J.
,
von Sachs
,
R.
, and
Guo
,
W.
,
2002
, “
The SLEX Model of a Non-Stationary Random Process
,”
Ann. Inst. Stat. Math.
,
54
, pp.
171
200
.10.1023/A:1016130108440
6.
Schueller
,
G. I.
,
Pradlwarter
,
H. J.
, and
Koutsourelakis
,
P. S.
,
2004
, “
A Critical Appraisal of Reliability Estimation Procedures for High Dimensions
,”
Probab. Eng. Mech.
,
19
, pp.
463
474
.10.1016/j.probengmech.2004.05.004
7.
Vanmarcke
,
E. H.
,
1975
, “
On the Distribution of the First-Passage Time for Normal Stationary Random Processes
,”
ASME J. Appl. Mech.
,
42
, pp.
215
220
.10.1115/1.3423521
8.
Barbato
,
M.
, and
Conte
,
J. P.
,
2001
, “
Structural Reliability Applications of Non-Stationary Spectral Characteristics
,”
ASCE J. Eng. Mech.
,
137
, pp.
371
382
.10.1061/(ASCE)EM.1943-7889.0000238
9.
Li
,
J.
, and
Chen
,
J.
,
2009
,
Stochastic Dynamics of Structures
,
Dover
,
New York
.
10.
Iourtchenko
,
D. V.
,
Mo
,
E.
, and
Naess
,
A.
,
2006
, “
Response Probability Density Functions of Strongly Non-Linear Systems by the Path Integration Method
,”
Int. J. Non-Linear Mech.
,
41
, pp.
693
705
.10.1016/j.ijnonlinmec.2006.04.002
11.
Cottone
,
G.
,
Di Paola
,
M.
,
Ibrahim
,
R.
,
Pirrotta
,
A.
, and
Santoro
,
R.
,
2010
, “
Stochastic Ship Roll Motion Via Path Integral Method
,”
Int. J. Nav. Archit. Ocean Eng.
,
2
, pp.
119
126
.10.3744/JNAOE.2010.2.3.119
12.
Naess
,
A.
,
Iourtchenko
,
D.
, and
Batsevych
,
O.
,
2011
, “
Reliability of Systems With Randomly Varying Parameters by the Path Integration Method
,”
Probab. Eng. Mech.
,
26
, pp.
5
9
.10.1016/j.probengmech.2010.05.005
13.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
Response and First-Passage Statistics of Nonlinear Oscillators Via a Numerical Path Integral Approach
,”
ASCE J. Eng. Mech.
,
139
, pp.
1207
1217
.10.1061/(ASCE)EM.1943-7889.0000564
14.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
, “
Stochastic Response Analysis of the Softening Duffing Oscillator and Ship Capsizing Probability Determination Via Numerical Path Integral Approach
,”
Probab. Eng. Mech.
(in press).10.1016/j.probengmech.2013.06.001
15.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2009
, “
An Approximate Approach for Nonlinear System Response Determination Under Evolutionary Stochastic Excitation
,”
Curr. Sci.
,
97
(
8
), pp.
1203
1211
.
16.
Spanos
,
P. D.
, and
Lutes
,
L. D.
,
1980
, “
Probability of Response to Evolutionary Process
,”
J. Eng. Mech.
,
106
, pp.
213
224
.
17.
Roberts
,
J. B.
, and
Spanos
,
P. D.
,
2003
,
Random Vibration and Statistical Linearization
,
Dover
,
New York
.
18.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2012
, “
An Analytical Wiener Path Integral Technique for Non-Stationary Response Determination of Nonlinear Oscillators
,”
Probab. Eng. Mech.
,
28
, pp.
125
131
.10.1016/j.probengmech.2011.08.022
19.
Oksendal
,
B.
,
2003
,
Stochastic Differential Equations: An Introduction With Applications
,
Springer
,
New York.
20.
Spanos
,
P. D.
,
1978
, “
Non-Stationary Random Vibration of a Linear Structure
,”
Int. J. Solids Struct.
,
14
, pp.
861
867
.10.1016/0020-7683(78)90076-8
21.
Spanos
,
P. D.
, and
Solomos
,
G. P.
,
1983
, “
Markov Approximation to Transient Vibration
,”
J. Eng. Mech.
,
109
, pp.
1134
1150
.10.1061/(ASCE)0733-9399(1983)109:4(1134)
22.
Qian
,
S.
,
2002
,
Introduction to Time-Frequency and Wavelet Transforms
,
Prentice–Hall
,
Englewood Cliffs, NJ
.
23.
Spanos
,
P. D.
,
Giaralis
,
A.
,
Politis
,
N. P.
, and
Roesset
,
J. M.
,
2007
, “
Numerical Treatment of Seismic Accelerograms and of Inelastic Seismic Structural Responses Using Harmonic Wavelets
,”
Comput. Aided Civ. Infrastruct. Eng.
,
22
, pp.
254
264
.10.1111/j.1467-8667.2007.00483.x
24.
Solomos
,
G. P.
, and
Spanos
,
P. D.
,
1983
, “
Structural Reliability Under Evolutionary Seismic Excitation
,”
Soil Dyn. Earthquake Eng.
,
2
, pp.
110
116
.10.1016/0261-7277(83)90007-4
25.
Abramowitz
,
M.
, and
Stegun
,
I. A.
,
1970
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
26.
Liu
,
S. C.
,
1970
, “
Evolutionary Power Spectral Density of Strong-Motion Earthquakes
,”
Bull. Seismol. Soc. Am.
,
60
, pp.
891
900
.
27.
Sabetta
,
F.
, and
Pugliese
,
A.
,
1996
, “
Estimation of Response Spectra and Simulation of Non-Stationary Earthquake Ground Motions
,”
Bull. Seismol. Soc. Am.
,
86
, pp.
337
352
.
28.
Kougioumtzoglou
,
I. A.
, and
Spanos
,
P. D.
,
2013
, “
An Identification Approach for Linear and Nonlinear Time-Variant Structural Systems Via Harmonic Wavelets
,”
Mech. Syst. Signal Process.
,
37
, pp.
338
352
.10.1016/j.ymssp.2013.01.011
29.
Shinozuka
,
M.
, and
Deodatis
,
G.
,
1991
, “
Simulation of Stochastic Processes by Spectral Representation
,”
ASME Appl. Mech. Rev.
,
44
, pp.
191
203
.10.1115/1.3119501
30.
Liang
,
J.
,
Chaudhuri
,
S. R.
, and
Shinozuka
,
M.
,
2007
, “
Simulation of Non-stationary Stochastic Processes by Spectral Representation
,”
J. Eng. Mech.
,
133
, pp.
616
627
.10.1061/(ASCE)0733-9399(2007)133:6(616)
31.
Mayergoyz
,
I. D.
,
2003
,
Mathematical Models of Hysteresis and Their Applications
,
Elsevier
,
New York
.
32.
Ktena
,
A.
,
Fotiadis
,
D. I.
,
Spanos
,
P. D.
, and
Massalas
,
C. V.
,
2001
, “
A Preisach Model Identification Procedure and Simulation of Hysteresis in Ferromagnets and Shape Memory Alloys
,”
Physica B
,
306
, pp.
84
90
.10.1016/S0921-4526(01)00983-8
33.
Ni
,
Y. Q.
,
Ying
,
Z. G.
, and
Ko
,
J. M.
,
2002
, “
Random Response Analysis of Preisach Hysteretic Systems With Symmetric Weight Distribution
,”
ASME J. Appl. Mech.
,
69
, pp.
171
178
.10.1115/1.1428333
34.
Spanos
,
P. D.
,
Cacciola
,
P.
, and
Muscolino
,
G.
,
2004
, “
Stochastic Averaging of Preisach Hysteretic Systems
,”
J. Eng. Mech.
,
130
, pp.
1257
1267
.10.1061/(ASCE)0733-9399(2004)130:11(1257)
35.
Wang
,
Y.
,
Ying
,
Z. G.
, and
Zhu
,
W. Q.
,
2009
, “
Stochastic Averaging of Energy Envelope of Preisach Hysteretic Systems
,”
J. Sound Vib.
,
321
, pp.
976
993
.10.1016/j.jsv.2008.10.021
36.
Kougioumtzoglou
,
I. A.
,
2013
, “
Stochastic Joint Time-Frequency Response Analysis of Nonlinear Structural Systems
,”
J. Sound Vib.
,
332
, pp.
7153
7173
.10.1016/j.jsv.2013.08.024
You do not currently have access to this content.