A material is said to be flexoelectric when it polarizes in response to strain gradients. The phenomenon is well known in liquid crystals and biomembranes but has received less attention in hard materials such as ceramics. Here we derive the governing equations for a flexoelectric solid under small deformation. We assume a linear constitutive relation and use it to prove a reciprocal theorem for flexoelectric materials as well as to obtain a higher-order Navier equation in the isotropic case. The Navier equation is similar to that in Mindlin's theory of strain-gradient elasticity. We also provide analytical solutions to several boundary value problems. We predict size-dependent electromechanical properties and flexoelectric modulation of material behavior. Our results can be used to interpret experiments on flexoelectric materials which are becoming increasingly sophisticated due to the advent of nanoscale probes.

References

1.
Landau
,
L. D.
,
Lifshitz
,
E. M.
, and
Pitaevskii
,
L.
,
1984
,
Electrodynamics of Continuous Media
,
Pergamon Press
,
UK
.
2.
Maugin
,
G. A.
, and
Eringen
,
A. C.
,
1990
,
Electrodynamics of Continua
,
Springer-Verlag
,
Berlin
.
3.
Kovetz
,
A.
,
2000
,
Electromagnetic Theory
,
Oxford
,
New York
.
4.
Meyer
,
R. B.
,
1969
, “
Piezoelectric Effects in Liquid Crystals
,”
Phys. Rev. Lett.
,
22
(18), pp.
918
921
.10.1103/PhysRevLett.22.918
5.
Buka
,
A.
, and
Eber
,
N.
,
2012
,
Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications
,
Imperial College Press
,
London
.
6.
Raphael
,
R. M.
,
Popel
,
A. S.
, and
Brownell
,
W. E.
,
2010
, “
A Membrane Bending Model of Outer Hair Cell Electromotility
,”
Biophys. J.
,
78
(6), pp.
2844
2862
.10.1016/S0006-3495(00)76827-5
7.
Petrov
,
A. G.
,
2006
, “
Electricity and Mechanics of Biomembrane Systems: Flexoelectricity in Living Membranes
,”
Anal. Chim. Acta
,
568
(1–2), pp.
70
83
.10.1016/j.aca.2006.01.108
8.
Petrov
,
A. G.
,
2002
, “
Flexoelectricity of Model and Living Membranes
,”
Biochim. Biophys. Acta
,
1561
(
1
), pp.
1
25
.10.1016/S0304-4157(01)00007-7
9.
Harland
,
B.
,
Brownell
,
W. E.
,
Spector
,
A. A.
, and
Sun
,
S. X.
,
2010
, “
Voltage-Induced Bending and Electromechanical Coupling in Lipid Bilayers
,”
Phys. Rev. E
,
81
(3), p.
031907
.10.1103/PhysRevE.81.031907
10.
Mashkevich
,
V. S.
, and
Tolpygo
,
K. B.
,
1957
, “
Electrical, Optical and Elastic Properties of Diamond Type Crystals. I.
,”
Sov. Phys. JETP
,
5
, pp.
435
439
.
11.
Tolpygo
,
K. B.
,
1963
, “
Long Wavelength Oscillations of Diamond-Type Crystals Including Long Range Forces
,”
Sov. Phys. Sol. State
,
4
, pp.
1297
1305
.
12.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys. Sol. State
,
5
, pp.
2069
2070
.
13.
Tagantsev
,
A. K.
,
1991
, “
Electric Polarization in Crystals and Its Response to Thermal and Elastic Perturbations
,”
Phase Transitions
,
35
(
3–4
), pp.
119
203
.10.1080/01411599108213201
14.
Ma
,
W.
, and
Cross
,
L. E.
,
2001
, “
Large Flexoelectric Polarization in Ceramic Lead Magnesium Niobate
,”
Appl. Phys. Lett.
,
79
(26), pp.
4420
4422
.10.1063/1.1426690
15.
Ma
,
W.
, and
Cross
,
L. E.
,
2002
, “
Flexoelectric Polarization of Barium Strontium Titanate in the Paraelectric State
,”
Appl. Phys. Lett.
,
81
(18), pp.
3440
3442
.10.1063/1.1518559
16.
Zubko
,
P.
,
Catalan
,
G.
,
Buckley
,
A.
,
Welche
,
P. R. L.
, and
Scott
,
J. F.
,
2007
, “
Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals
,”
Phys. Rev. Lett.
,
99
(16), p.
167601
.10.1103/PhysRevLett.99.167601
17.
Eliseev
,
E. A.
,
Morozovska
,
A. N.
,
Glinchuk
,
M. D.
, and
Blinc
,
R.
,
2009
, “
Spontaneous Flexoelectric/Flexomagnetic Effect in Nanoferroics
,”
Phys. Rev. B
,
79
(16), p.
165433
.10.1103/PhysRevB.79.165433
18.
Lee
,
D.
,
Yoon
,
A.
,
Jang
,
S. Y.
,
Yoon
,
J.-G.
,
Chung
,
J.-S.
,
Kim
,
M.
,
Scott
,
J. F.
, and
Noh
,
T. W.
,
2011
, “
Giant Flexoelectric Effect in Ferroelectric Epitaxial Thin Films
,”
Phys. Rev. Lett.
,
107
(5), p.
057602
.10.1103/PhysRevLett.107.057602
19.
Nguyen
,
T. D.
,
Deshmukh
,
N.
,
Nagarah
,
J. M.
,
Kramer
,
T.
,
Purohit
,
P. K.
,
Berry
,
M. J.
, and
McAlpine
,
M. C.
,
2012
, “
Piezoelectric Nanoribbons for Monitoring Cellular Deformations
,”
Nat. Nanotechnol.
,
7
(9), pp.
587
593
.10.1038/nnano.2012.112
20.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
.10.1146/annurev-matsci-071312-121634
21.
Catalan
,
G.
,
Lubk
,
A.
,
Vlooswijk
,
A. H. G.
,
Snoeck
,
E.
,
Magen
,
C.
,
Janssens
,
A.
,
Rispens
,
G.
,
Rijnders
,
G.
,
Blank
,
D. H. A.
, and
Noheda
,
B.
,
2011
, “
Flexoelectric Rotation of Polarization in Ferroelectric Thin Films
,”
Nat. Mater.
,
10
(12), pp.
963
967
.10.1038/nmat3141
22.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(12), p.
125424
.10.1103/PhysRevB.77.125424
23.
Majdoub
,
M. S.
,
Sharma
,
P.
, and
Çağin
,
T.
,
2009
, “
Erratum: Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures Due to the Flexoelectric Effect
,”
Phys. Rev. B
,
79
(11), p.
119904
.10.1103/PhysRevB.79.119904
24.
Sharma
,
N. D.
,
Landis
,
C. M.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(
2
), p.
024304
.10.1063/1.3443404
25.
Sharma
,
N. D.
,
Landis
,
C.
, and
Sharma
,
P.
,
2012
, “
Erratum: Piezoelectric Thin-Film Super-Lattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
111
(
5
), p.
059901
.10.1063/1.3684987
26.
Ahluwalia
,
R.
, and
Srolovitz
,
D.
,
2007
, “
Size Effects in Ferroelectric Thin Films: 180° Domains and Polarization Relaxation
,”
Phys. Rev. B
,
76
(
17
), p.
174121
.10.1103/PhysRevB.76.174121
27.
Tagantsev
,
A. K.
,
1985
, “
Theory of Flexoelectric Effect in Crystals
,”
Zh. Eksp. Teor. Fiz.
,
88
, pp.
2108
2122
.
28.
Maranganti
,
R.
, and
Sharma
,
P.
,
2009
, “
Atomistic Determination of Flexoelectric Properties of Crystalline Dielectrics
,”
Phys. Rev. B
,
80
(5), p.
054109
.10.1103/PhysRevB.80.054109
29.
Kalinin
,
S. V.
, and
Meunier
,
V.
,
2008
, “
Electronic Flexoelectricity in Low-Dimensional Systems
,”
Phys. Rev. B
,
77
(3), p.
033403
.10.1103/PhysRevB.77.033403
30.
Resta
,
R.
,
2010
, “
Towards a Bulk Theory of Flexoelectricity
,”
Phys. Rev. Lett.
,
105
(12), p.
127601
.10.1103/PhysRevLett.105.127601
31.
Hong
,
J.
, and
Vanderbilt
,
D.
,
2011
, “
First-Principles Theory of Frozen-Ion Flexoelectricity
,”
Phys. Rev. B
,
84
(18), p.
180101
.10.1103/PhysRevB.84.180101
32.
Hong
,
J.
,
Catalan
,
G.
,
Scott
,
J. F.
, and
Artacho
,
E.
,
2010
, “
The Flexoelectricity of Barium and Strontium Titanates From First Principles
,”
J. Phys.: Condens. Matter
,
22
(
11
), p.
112201
.10.1088/0953-8984/22/11/112201
33.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y.-W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(7), pp.
946
974
.10.1002/adma.201203852
34.
Yan
,
Z.
, and
Jiang
,
L. Y.
,
2013
, “
Flexoelectric Effect on the Electroelastic Responses of Bending Piezoelectric Nanobeams
,”
J. Appl. Phys.
,
113
(
19
), p.
194102
. 10.1063/1.4804949
35.
Suo
,
Z.
,
Zhao
,
X.
, and
Greene
,
W.
,
2008
, “
A Nonlinear Field Theory of Deformable Dielectrics
,”
J. Mech. Phys. Solids
,
56
(
2
), pp.
467
486
.10.1016/j.jmps.2007.05.021
36.
Toupin
,
R. A.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(1), pp.
385
414
.10.1007/BF00253945
37.
Koiter
,
W. T.
,
1964
, “
Couple-Stresses in the Theory of Elasticity
,”
Proc. K. Ned. Akad. Wet., Ser. B Phys. Sci.
,
67
, pp.
17
44
.
38.
Mindlin
,
R. D.
, and
Eshel
,
N. N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids. Struct.
,
4
(6), pp.
637
642
.10.1016/0020-7683(68)90079-6
39.
Mindlin
,
R. D.
,
1964
, “
Micro-Structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
(1), pp.
51
78
.10.1007/BF00248490
40.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(1), pp.
415
448
.10.1007/BF00253946
41.
Aifantis
,
E. C.
,
1984
, “
On the Microstructural Origin of Certain Inelastic Models
,”
ASME J. Eng. Mater. Technol.
,
106
(4), pp.
326
330
.10.1115/1.3225725
42.
Aifantis
,
E. C.
,
1992
, “
On the Role of Gradients in the Localization of Deformation and Fracture
,”
Int. J. Eng. Sci.
,
30
(10), pp.
1279
1299
.10.1016/0020-7225(92)90141-3
43.
Fleck
,
N. A.
, and
Hutchingson
,
J. W.
,
1997
, “
Strain Gradient Plasticity
,”
Adv. Appl. Mech.
,
33
, pp.
295
361
.10.1016/S0065-2156(08)70388-0
44.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchingson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(2), pp.
475
487
.10.1016/0956-7151(94)90502-9
45.
Yang
,
F.
,
Chong
,
A. C. M.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids. and Struct.
,
39
(
10
), pp.
2731
2743
.10.1016/S0020-7683(02)00152-X
46.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2011
, “
Couple Stress Theory for Solids
,”
Int. J. Solids. Struct.
,
48
(
18
), pp.
2496
2510
.10.1016/j.ijsolstr.2011.05.002
47.
Maranganti
,
R.
,
Sharma
,
N. D.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials Due to Nanoscale Nonlocal Size Effects: Green's Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(1), p.
14110
.10.1103/PhysRevB.74.014110
48.
Aravas
,
N.
,
2011
, “
Plane-Strain Problems for a Class of Gradient Elasticity Models—A Stress Function Approach
,”
J. Elast.
,
104
(1–2), pp.
45
70
.10.1007/s10659-011-9308-7
49.
Gao
,
X.-L.
, and
Park
,
S.
,
2007
, “
Variational Formulation of a Simplified Strain Gradient Elasticity Theory and Its Application to a Pressurized Thick-Walled Cylinder Problem
,”
Int. J. Solids Struct.
,
44
(
2223
), pp.
7486
7499
.10.1016/j.ijsolstr.2007.04.022
50.
Toupin
,
R. A.
,
1956
, “
The Elastic Dielectric
,”
J. Ration. Mech. Anal.
,
5
, pp.
849
914
.
51.
Yang
,
J.
,
2005
,
An Introduction to the Theory of Piezoelectricity
,
Springer
,
New York
.
52.
Shu
,
L.
,
Wei
,
X.
,
Pang
,
T.
,
Yao
,
X.
, and
Wang
,
C.
,
2011
, “
Symmetry of Flexoelectric Coefficients in Crystalline Medium
,”
J. Appl. Phys.
,
110
(
10
), p.
104106
.10.1063/1.3662196
53.
Yang
,
J.
,
Zhou
,
H.
, and
Li
,
J.
,
2006
, “
Electric Field Gradient Effects in An Anti-Plane Circular Inclusion in Polarized Ceramics
,”
Proc. R. Soc. A
,
462
(
2076
), pp.
3511
3522
.10.1098/rspa.2006.1711
54.
Nowacki
,
J. P.
,
2006
,
Static and Dynamic Coupled Fields in Bodies With Piezoeffects or Polarization Gradient
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.