Full-scale, 3D, time-dependent aerodynamics and fluid–structure interaction (FSI) simulations of a Darrieus-type vertical-axis wind turbine (VAWT) are presented. A structural model of the Windspire VAWT (Windspire energy, http://www.windspireenergy.com/) is developed, which makes use of the recently proposed rotation-free Kirchhoff–Love shell and beam/cable formulations. A moving-domain finite-element-based ALE-VMS (arbitrary Lagrangian–Eulerian-variational-multiscale) formulation is employed for the aerodynamics in combination with the sliding-interface formulation to handle the VAWT mechanical components in relative motion. The sliding-interface formulation is augmented to handle nonstationary cylindrical sliding interfaces, which are needed for the FSI modeling of VAWTs. The computational results presented show good agreement with the field-test data. Additionally, several scenarios are considered to investigate the transient VAWT response and the issues related to self-starting.

References

1.
“Windspire Vertical Wind Turbine,” 2014, Ark Alloy, LLC, Reedsburg, WI, http://www.windspireenergy.com/
2.
Vita
,
L.
,
Paulsen
,
U. S.
, and
Pedersen
,
T. F.
,
2010
, “
A Novel Floating Offshore Wind Turbine Concept: New Developments
,” European Wind Energy Conference & Exhibition (EWEC 2010), Warsaw, Poland, April 20–23.
3.
Vita
,
L.
,
Paulsen
,
U. S.
,
Madsen
,
H. A.
,
Nielsen
,
H. P.
,
Berthelsen
,
P. A.
, and
Cartsensen
,
S.
,
2012
, “
Design and Aero-Elastic Simulation of a 5 MW Floating Vertical Axis Wind Turbine
,”
ASME
Paper No. OMAE2012-83470. 10.1115/OMAE2012-83470
4.
Hau
,
E.
,
2006
,
Wind Turbines: Fundamentals, Technologies, Application, Economics
, 2nd ed.,
Springer
,
Berlin
.
5.
Kirke
,
B.
, and
Lazauskas
,
L.
,
1991
, “
Enhancing the Performance of a Vertical Axis Wind Turbine Using a Simple Variable Pitch System
,”
Wind Eng.
,
15
(
4
), pp.
187
195
.
6.
Dominy
,
R.
,
Lunt
,
P.
,
Bickerdyke
,
A.
, and
Dominy
,
J.
,
2007
, “
Self-Starting Capability of a Darrieus Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
221
(
1
), pp.
111
120
.10.1243/09576509JPE340
7.
Hill
,
N.
,
Dominy
,
R.
,
Ingram
,
G.
, and
Dominy
,
J.
,
2009
, “
Darrieus Turbines: The Physics of Self-Starting
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
1
), pp.
21
29
.10.1243/09576509JPE615
8.
Baker
,
J. R.
,
1983
, “
Features to Aid or Enable Self Starting of Fixed Pitch Low Solidity Vertical Axis Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
15
(1–3), pp.
369
380
.10.1016/0167-6105(83)90206-4
9.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
,
Wright
,
S.
,
Takizawa
,
K.
,
Henicke
,
B.
,
Spielman
,
T.
, and
Tezduyar
,
T. E.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part I: Geometry Modeling and Aerodynamics
,”
Int. J. Numer. Methods Fluids
,
65
(1–3), pp.
207
235
.10.1002/fld.2400
10.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Kiendl
,
J.
,
Wüchner
,
R.
, and
Bletzinger
,
K.-U.
,
2011
, “
3D Simulation of Wind Turbine Rotors at Full Scale. Part II: Fluid–Structure Interaction Modeling With Composite Blades
,”
Int. J. Numer. Methods Fluids
,
65
(1–3), pp.
236
253
.10.1002/fld.2454
11.
Chow
,
R.
, and
van Dam
,
C. P.
,
2012
, “
Verification of Computational Simulations of the NREL 5 MW Rotor With a Focus on Inboard Flow Separation
,”
Wind Energy
,
15
(
8
), pp.
967
981
.10.1002/we.529
12.
Bechmann
,
A.
,
Sørensen
,
N. N.
, and
Zahle
,
F.
,
2011
, “
CFD Simulations of the MEXICO Rotor
,”
Wind Energy
,
14
(5), pp.
677
689
.10.1002/we.450
13.
Takizawa
,
K.
,
Henicke
,
B.
,
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2011
, “
Stabilized Space–Time Computation of Wind-Turbine Rotor Aerodynamics
,”
Comput. Mech.
,
48
(3), pp.
333
344
.10.1007/s00466-011-0589-2
14.
Takizawa
,
K.
,
Henicke
,
B.
,
Montes
,
D.
,
Tezduyar
,
T. E.
,
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2011
, “
Numerical-Performance Studies for the Stabilized Space–Time Computation of Wind-Turbine Rotor Aerodynamics
,”
Comput. Mech.
,
48
(6), pp.
647
657
.10.1007/s00466-011-0614-5
15.
Sørensen
,
N. N.
, and
Schreck
,
S.
,
2012
, “
Computation of the National Renewable Energy Laboratory Phase-VI Rotor in Pitch Motion During Standstill
,”
Wind Energy
,
15
(
3
), pp.
425
442
.10.1002/we.480
16.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2013
, “
Finite Element Simulation of Wind Turbine Aerodynamics: Validation Study Using NREL Phase VI Experiment
,”
Wind Energy
,
17
(
3
), pp.
461
481
.10.1002/we.1599
17.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
McIntyre
,
S.
,
Kostov
,
N.
,
Kolesar
,
R.
, and
Habluetzel
,
C.
,
2014
, “
Space–Time VMS Computation of Wind-Turbine Rotor and Tower Aerodynamics
,”
Comput. Mech.
,
53
(1), pp.
1
15
.10.1007/s00466-013-0888-x
18.
Korobenko
,
A.
,
Hsu
,
M.
,
Akkerman
,
I.
,
Tippmann
,
J.
, and
Bazilevs
,
Y.
,
2013
, “
Structural Mechanics Modeling and FSI Simulation of Wind Turbines
,”
Math. Models Methods Appl. Sci.
,
23
(2), pp.
249
272
.10.1142/S0218202513400034
19.
Hsu
,
M.-C.
, and
Bazilevs
,
Y.
,
2012
, “
Fluid–Structure Interaction Modeling of Wind Turbines: Simulating the Full Machine
,”
Comput. Mech.
,
50
(6), pp.
821
833
.10.1007/s00466-012-0772-0
20.
Stein
,
P.
,
Hsu
,
M.-C.
,
Bazilevs
,
Y.
, and
Beucke
,
K.
,
2012
, “
Operator- and Template-Based Modeling of Solid Geometry for Isogeometric Analysis With Application to Vertical Axis Wind Turbine Simulation
,”
Comput. Methods Appl. Mech. Eng.
,
213–216
, pp.
71
83
.10.1016/j.cma.2011.11.008
21.
Scheurich
,
F.
,
Fletcher
,
T.
, and
Brown
,
R.
,
2011
, “
Simulating the Aerodynamic Performance and Wake Dynamics of a Vertical-Axis Wind Turbine
,”
Wind Energy
,
14
(2), pp.
159
177
.10.1002/we.409
22.
Scheurich
,
F.
, and
Brown
,
R.
,
2012
, “
Modelling the Aerodynamics of Vertical-Axis Wind Turbines in Unsteady Wind Conditions
”.
Wind Energy.
,
16
(1), pp.
91
107
.10.1002/we.532
23.
McLaren
,
K.
,
Tullis
,
S.
, and
Ziada
,
S.
,
2012
, “
Computational Fluid Dynamics Simulation of the Aerodynamics of a High Solidity, Small-Scale Vertical Axis Wind Turbine
,”
Wind Energy
,
15
(3), pp.
349
361
.10.1002/we.472
24.
Korobenko
,
A.
,
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2013
, “
Aerodynamic Simulation of Vertical-Axis Wind Turbines
,”
ASME J. Appl. Mech.
,
81
(
2
), p.
021011
.10.1115/1.4024415
25.
Huskey
,
A.
,
Bowen
,
A.
, and
Jager
,
D.
,
2009
, “
Wind Turbine Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-500-46192.
26.
Dabiri
,
J. O.
,
2011
, “
Potential Order-of-Magnitude Enhancement of Wind Farm Power Density Via Counter-Rotating Vertical-Axis Wind Turbine Arrays
,”
J. Renewable Sustainable Energy
,
3
(4), p.
043104
.10.1063/1.3608170
27.
“Biological Propulsion Laboratory at CALTECH (Wind Energy Research),” 2012, California Institute of Technology, Pasadena, CA, http://dabiri.caltech.edu/research/wind-energy.html
28.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
, and
Scott
,
M. A.
,
2012
, “
Isogeometric Fluid–Structure Interaction Analysis With Emphasis on Non-Matching Discretizations, and With Application to Wind Turbines
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
, pp.
28
41
.10.1016/j.cma.2012.03.028
29.
Hughes
,
T. J. R.
,
Liu
,
W. K.
, and
Zimmermann
,
T. K.
,
1981
, “
Lagrangian–Eulerian Finite Element Formulation for Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
29
(3), pp.
329
349
.10.1016/0045-7825(81)90049-9
30.
Belytschko
,
T.
,
Liu
,
W. K.
, and
Moran
,
B.
,
2000
,
Nonlinear Finite Elements for Continua and Structures
,
Wiley
,
New York
.
31.
Bazilevs
,
Y.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2013
,
Computational Fluid–Structure Interaction: Methods and Applications
,
Wiley
,
New York
.
32.
Takizawa
,
K.
,
Bazilevs
,
Y.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling
,”
Arch. Comput. Methods Eng.
,
19
(2), pp.
171
225
.10.1007/s11831-012-9071-3
33.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
ALE-VMS and ST-VMS Methods for Computer Modeling of Wind-Turbine Rotor Aerodynamics and Fluid–Structure Interaction
,”
Math. Models Methods Appl. Sci.
,
22
(
Supp 02
), p.
1230002
.10.1142/S0218202512300025
34.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Imposition of Dirichlet Boundary Conditions in Fluid Mechanics
,”
Comput. Fluids
,
36
(1), pp.
12
26
.10.1016/j.compfluid.2005.07.012
35.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V. M.
, and
Hughes
,
T. J. R.
,
2007
, “
Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
(49–52), pp.
4853
4862
.10.1016/j.cma.2007.06.026
36.
Bazilevs
,
Y.
,
Michler
,
C.
,
Calo
,
V. M.
, and
Hughes
,
T. J. R.
,
2010
, “
Isogeometric Variational Multiscale Modeling of Wall-Bounded Turbulent Flows With Weakly Enforced Boundary Conditions on Unstretched Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(13–16), pp.
780
790
.10.1016/j.cma.2008.11.020
37.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2011
, “
High-Performance Computing of Wind Turbine Aerodynamics Using Isogeometric Analysis
,”
Comput. Fluids
,
49
(1), pp.
93
100
.10.1016/j.compfluid.2011.05.002
38.
Hsu
,
M.-C.
,
Akkerman
,
I.
, and
Bazilevs
,
Y.
,
2012
, “
Wind Turbine Aerodynamics Using ALE–VMS: Validation and the Role of Weakly Enforced Boundary Conditions
,”
Comput. Mech.
,
50
(4), pp.
499
511
.10.1007/s00466-012-0686-x
39.
Kiendl
,
J.
,
Bletzinger
,
K.-U.
,
Linhard
,
J.
, and
Wüchner
,
R.
,
2009
, “
Isogeometric Shell Analysis With Kirchhoff–Love Elements
,”
Comput. Methods Appl. Mech. Eng.
,
198
(49–52), pp.
3902
3914
.10.1016/j.cma.2009.08.013
40.
Raknes
,
S.
,
Deng
,
X.
,
Bazilevs
,
Y.
,
Benson
,
D.
,
Mathisen
,
K.
, and
Kvamsdal
,
T.
,
2013
, “
Isogeometric Rotation-Free Bending-Stabilized Cables: Statics, Dynamics, Bending Strips and Coupling With Shells
,”
Comput. Methods Appl. Mech. Eng.
,
263
, pp.
127
143
.10.1016/j.cma.2013.05.005
41.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(39–41), pp.
4135
4195
.10.1016/j.cma.2004.10.008
42.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
Wiley
,
Chichester, UK
.
43.
Tezduyar
,
T. E.
, and
Sathe
,
S.
,
2007
, “
Modeling of Fluid–Structure Interactions With the Space–Time Finite Elements: Solution Techniques
,”
Int. J. Numer. Methods Fluids
,
54
(6–8), pp.
855
900
.10.1002/fld.1430
44.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Pausewang
,
J.
,
Schwaab
,
M.
,
Christopher
,
J.
, and
Crabtree
,
J.
,
2008
, “
Interface Projection Techniques for Fluid–Structure Interaction Modeling With Moving-Mesh Methods
,”
Comput. Mech.
,
43
(1), pp.
39
49
.10.1007/s00466-008-0261-7
45.
Tezduyar
,
T. E.
,
Schwaab
,
M.
, and
Sathe
,
S.
,
2009
, “
Sequentially-Coupled Arterial Fluid–Structure Interaction (SCAFSI) Technique
,”
Comput. Methods Appl. Mech. Eng.
,
198
(45–46), pp.
3524
3533
.10.1016/j.cma.2008.05.024
46.
Takizawa
,
K.
,
Christopher
,
J.
,
Tezduyar
,
T. E.
, and
Sathe
,
S.
,
2010
, “
Space–Time Finite Element Computation of Arterial Fluid–Structure Interactions With Patient-Specific Data
,”
Int. J. Numerical Methods Biomed. Eng.
,
26
(1), pp.
101
116
.10.1002/cnm.1241
47.
Tezduyar
,
T. E.
,
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
, and
Christopher
,
J.
,
2010
, “
Multiscale Sequentially-Coupled Arterial FSI Technique
,”
Comput. Mech.
,
46
(1), pp.
17
29
.10.1007/s00466-009-0423-2
48.
Tezduyar
,
T. E.
,
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
, and
Christopher
,
J.
,
2010
, “
Space–Time Finite Element Computation of Complex Fluid–Structure Interactions
,”
Int. J. Numer. Methods Fluids
,
64
(10–12), pp.
1201
1218
.10.1002/fld.2221
49.
Takizawa
,
K.
,
Moorman
,
C.
,
Wright
,
S.
,
Purdue
,
J.
,
McPhail
,
T.
,
Chen
,
P. R.
,
Warren
,
J.
, and
Tezduyar
,
T. E.
,
2011
, “
Patient-Specific Arterial Fluid–Structure Interaction Modeling of Cerebral Aneurysms
,”
Int. J. Numer. Methods Fluids
,
65
(1–3), pp.
308
323
.10.1002/fld.2360
50.
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2011
, “
Multiscale Space–Time Fluid–Structure Interaction Techniques
,”
Comput. Mech.
,
48
(3), pp.
247
267
.10.1007/s00466-011-0571-z
51.
Tezduyar
,
T. E.
,
Takizawa
,
K.
,
Brummer
,
T.
, and
Chen
,
P. R.
,
2011
, “
Space–Time Fluid–Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(11), pp.
1665
1710
.10.1002/cnm.1433
52.
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2012
, “
Space–Time Fluid–Structure Interaction Methods
,”
Math. Models Methods Appl. Sci.
,
22
(
Supp 02
), p.
1230001
.10.1142/S0218202512300013
53.
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2008
, “
NURBS-Based Isogeometric Analysis for the Computation of Flows About Rotating Components
,”
Comput. Mech.
,
43
(1), pp.
143
150
.10.1007/s00466-008-0277-z
54.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
,
Kalro
,
V.
, and
Litke
,
M.
,
1996
, “
Flow Simulation and High Performance Computing
,”
Comput. Mech.
,
18
(6), pp.
397
412
.10.1007/BF00350249
55.
Behr
,
M.
, and
Tezduyar
,
T.
,
1999
, “
The Shear-Slip Mesh Update Method
,”
Comput. Methods Appl. Mech. Eng.
,
174
(3–4), pp.
261
274
.10.1016/S0045-7825(98)00299-0
56.
Behr
,
M.
, and
Tezduyar
,
T.
,
2001
, “
Shear-Slip Mesh Update in 3D Computation of Complex Flow Problems With Rotating Mechanical Components
,”
Comput. Methods Appl. Mech. Eng.
,
190
(24–25), pp.
3189
3200
.10.1016/S0045-7825(00)00388-1
57.
Tezduyar
,
T. E.
,
2001
, “
Finite Element Methods for Flow Problems With Moving Boundaries and Interfaces
,”
Arch. Comput. Methods Eng.
,
8
(2), pp.
83
130
.10.1007/BF02897870
58.
Tezduyar
,
T. E.
,
2007
, “
Finite Elements in Fluids: Special Methods and Enhanced Solution Techniques
,”
Comput. Fluids
,
36
(2), pp.
207
223
.10.1016/j.compfluid.2005.02.010
59.
Takizawa
,
K.
,
Tezduyar
,
T. E.
, and
Kostov
,
N.
,
2014
, “
Sequentially-Coupled Space-Time FSI Analysis of Bio-Inspired Flapping-Wing Aerodynamics of an MAV
,”
Comput. Mech.
, February (published online).10.1007/s00466-014-0980-x
60.
Takizawa
,
K.
,
2014
, “
Computational Engineering Analysis With the New-Generation Space-Time Methods
,”
Comput. Mech.
, March (published online).10.1007/s00466-014-0999-z
61.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Buscher
,
A.
, and
Asada
,
S.
,
2014
, “
Space-Time Interface-Tracking With Topology Change (ST-TC)
,”
Comput. Mech.
, October (published online).10.1007/s00466-013-0935-7
62.
Takizawa
,
K.
, and
Tezduyar
,
T. E.
,
2014
, “
Space–Time Computation Techniques With Continuous Representation in Time (ST-C)
,”
Comput. Mech.
,
53
(1), pp.
91
99
.10.1007/s00466-013-0895-y
63.
Takizawa
,
K.
,
Tezduyar
,
T. E.
,
Boben
,
J.
,
Kostov
,
N.
,
Boswell
,
C.
, and
Buscher
,
A.
,
2013
, “
Fluid–Structure Interaction Modeling of Clusters of Spacecraft Parachutes With Modified Geometric Porosity
,”
Comput. Mech.
,
52
(6), pp.
1351
1364
.10.1007/s00466-013-0880-5
64.
Tezduyar
,
T. E.
,
Behr
,
M.
,
Mittal
,
S.
, and
Johnson
,
A. A.
,
1992
, “
Computation of Unsteady Incompressible Flows With the Finite Element Methods—Space–Time Formulations, Iterative Strategies and Massively Parallel Implementations
,” New Methods in Transient Analysis, PVP-Vol. 246/AMD-Vol. 143, ASME, pp.
7
24
.
65.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
, and
Mittal
,
S.
,
1993
, “
Parallel Finite-Element Computation of 3D Flows
,”
Computer
,
26
(
10
), pp.
27
36
.10.1109/2.237441
66.
Johnson
,
A. A.
, and
Tezduyar
,
T. E.
,
1994
, “
Mesh Update Strategies in Parallel Finite Element Computations of Flow Problems With Moving Boundaries and Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
119
(1–2), pp.
73
94
.10.1016/0045-7825(94)00077-8
67.
Stein
,
K.
,
Tezduyar
,
T.
, and
Benney
,
R.
,
2003
, “
Mesh Moving Techniques for Fluid–Structure Interactions With Large Displacements
,”
ASME J. Appl. Mech.
,
70
(1), pp.
58
63
.10.1115/1.1530635
68.
Karypis
,
G.
, and
Kumar
,
V.
,
1999
, “
A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
,”
SIAM J. Sci. Comput.
,
20
(1), pp.
359
392
.10.1137/S1064827595287997
69.
Bazilevs
,
Y.
,
Hsu
,
M. C.
, and
Bement
,
M. T.
,
2013
, “
Adjoint-Based Control of Fluid–Structure Interaction for Computational Steering Applications
,”
Proc. Comput. Sci.
,
18
, pp.
1989
1998
.10.1016/j.procs.2013.05.368
70.
Texas Advanced Computing Center (TACC) 2013, University of Texas, Austin, TX, http://www.tacc.utexas.edu
You do not currently have access to this content.