In this article, we investigate the stress transfer characteristics of a novel hybrid hierarchical nanocomposite in which the regularly staggered short fuzzy fibers are interlaced in the polymer matrix. The advanced fiber augmented with carbon nanotubes (CNTs) on its circumferential surface is known as “fuzzy fiber.” A three-phase shear lag model is developed to analyze the stress transfer characteristics of the short fuzzy fiber reinforced composite (SFFRC) incorporating the staggering effect of the adjacent representative volume elements (RVEs). The effect of the variation of the axial and lateral spacing between the adjacent staggered RVEs in the polymer matrix on the load transfer characteristics of the SFFRC is investigated. The present shear lag model also accounts for the application of the radial loads on the RVE and the radial as well as the axial deformations of the different orthotropic constituent phases of the SFFRC. Our study reveals that the existence of the non-negligible shear tractions along the length of the RVE of the SFFRC plays a significant role in the stress transfer characteristics and cannot be neglected. Reductions in the maximum values of the axial stress in the carbon fiber and the interfacial shear stress along its length become more pronounced in the presence of the externally applied radial loads on the RVE. The results from the newly developed analytical shear lag model are validated with the finite element (FE) shear lag simulations and found to be in good agreement.

References

1.
Iijima
,
S.
,
1991
, “
Helical Microtubules of Graphitic Carbon
,”
Nature
,
354
(6348), pp.
56
58
.10.1038/354056a0
2.
Treacy
,
M. M. J.
,
Ebbesen
,
T. W.
, and
Gibson
,
J. M.
,
1996
, “
Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes
,”
Nature
,
381
(6584), pp.
678
680
.10.1038/381678a0
3.
Krishnan
,
A.
,
Dujardin
,
E.
,
Ebbesen
,
E. W.
,
Yianilos
,
P. N.
, and
Treacy
,
M. M. J.
,
1998
, “
Young's Modulus of Single-Walled Nanotubes
,”
Phys. Rev. B
,
58
(
20
), pp.
14013
14019
.10.1103/PhysRevB.58.14013
4.
Lourie
,
O.
, and
Wagner
,
H. D.
,
1998
, “
Evaluation of Young's Modulus of Carbon Nanotubes by Micro-Raman Spectroscopy
,”
J. Mater. Res.
,
13
(
9
), pp.
2418
2422
.10.1557/JMR.1998.0336
5.
Popov
,
V. N.
,
Van Doren
,
V. E.
, and
Balkanski
,
M.
,
2000
, “
Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
61
(
4
), pp.
3078
3084
.10.1103/PhysRevB.61.3078
6.
Li
,
C.
, and
Chou
,
T. W.
,
2003
, “
Multiscale Modeling of Carbon Nanotube Reinforced Polymer Composites
,”
J. Nanosci. Nanotechnol.
,
3
(5), pp.
423
430
.10.1166/jnn.2003.233
7.
Shen
,
L.
, and
Li
,
J.
,
2004
, “
Transversely Isotropic Elastic Properties of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
,
69
(4), p.
045414
.10.1103/PhysRevB.69.045414
8.
Tsai
,
J. L.
,
Tzeng
,
S. H.
, and
Chiu
,
Y. T.
,
2010
, “
Characterizing Elastic Properties of Carbon Nanotube/Polyimide Nanocomposites Using Multi-Scale Simulation
,”
Composites, Part B
,
41
(
1
), pp.
106
115
.10.1016/j.compositesb.2009.06.003
9.
Liu
,
Y. J.
, and
Chen
,
X. L.
,
2003
, “
Evaluations of the Effective Material Properties of Carbon Nanotube-Based Composites Using a Nanoscale Representative Volume Element
,”
Mech. Mater.
,
35
(1–2), pp.
69
81
.10.1016/S0167-6636(02)00200-4
10.
Thostenson
,
E. T.
, and
Chou
,
T. W.
,
2003
, “
On the Elastic Properties of Carbon Nanotube-Based Composites: Modeling and Characterization
,”
J. Phys. D: Appl. Phys.
,
36
(
5
), pp.
573
582
.10.1088/0022-3727/36/5/323
11.
Odegard
,
G. M.
,
Gates
,
T. S.
,
Wise
,
K. E.
,
Park
,
C.
, and
Siochi
,
E. J.
,
2003
, “
Constitutive Modeling of Nanotube-Reinforced Polymer Composites
,”
Compos. Sci. Technol.
,
63
(
11
), pp.
1671
1687
.10.1016/S0266-3538(03)00063-0
12.
Seidel
,
G. D.
, and
Lagoudas
,
D, C.
,
2006
, “
Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced Composites
,”
Mech. Mater.
,
38
(8–10), pp.
884
907
.10.1016/j.mechmat.2005.06.029
13.
Ray
,
M. C.
, and
Batra
,
R. C.
,
2009
, “
Effective Properties of Carbon Nanotube and Piezoelectric Fiber Reinforced Hybrid Smart Composites
,”
ASME J. Appl. Mech.
,
76(3)
, p.
034503
.10.1115/1.3063633
14.
Kulkarni
,
M.
,
Carnahan
,
M. D.
,
Kulkarni
,
K.
,
Qian
,
D.
, and
Abot
,
J. L.
,
2010
, “
Elastic Response of a Carbon Nanotube Fiber Reinforced Polymeric Composite: A Numerical and Experimental Study
,”
Composites, Part B
,
41
(
5
), pp.
414
421
.10.1016/j.compositesb.2009.09.003
15.
Meguid
,
S. A.
,
Wernik
,
J. M.
, and
Cheng
,
Z. Q.
,
2010
, “
Atomistic-Based Continuum Representation of the Effective Properties of Nano-Reinforced Epoxies
,”
Int. J. Solids Struct.
,
47
(
13
), pp.
1723
1736
.10.1016/j.ijsolstr.2010.03.009
16.
Thostenson
,
E. T.
,
Ren
,
Z.
, and
Chou
,
T. W.
,
2001
, “
Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review
,”
Compos. Sci. Technol.
,
61
(
13
), pp.
1899
1912
.10.1016/S0266-3538(01)00094-X
17.
Wernik
,
J. M.
, and
Meguid
,
S. A.
,
2010
, “
Recent Developments in Multifunctional Nanocomposites Using Carbon Nanotubes
,”
ASME Appl. Mech. Rev.
,
63
(5), p.
050801
.10.1115/1.4003503
18.
Thostenson
,
E. T.
,
Li
,
W. Z.
,
Wang
,
D. Z.
,
Ren
,
Z. F.
, and
Chou
,
T. W.
,
2002
, “
Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composites
,”
Appl. Phys. Lett.
,
91
(
9
), pp.
6034
6037
.10.1063/1.1466880
19.
Chen
,
L. H.
,
AuBuchon
,
J. F.
,
Chen
,
I. C.
,
Daraio
,
C.
,
Ye
,
X. R.
,
Gapin
,
A.
, and
Jin
,
S.
,
2006
, “
Growth of Aligned Carbon Nanotubes on Carbon Microfibers by DC Plasma-Enhanced Chemical Vapor Deposition
,”
Appl. Phys. Lett.
,
88
(3), p.
033103
.10.1063/1.2166472
20.
Veedu
,
V. P.
,
Cao
,
A.
,
Li
,
X.
,
Ma
,
K.
,
Soldano
,
C.
,
Kar
,
S.
,
Ajayan
,
P. M.
, and
Ghasemi-Nejhad
,
M. N.
,
2006
, “
Multifunctional Composites Using Reinforced Laminae With Carbon-Nanotube Forests
,”
Nature Mater.
,
5
(6), pp.
457
462
.10.1038/nmat1650
21.
Kepple
,
K. L.
,
Sanborn
,
G. P.
,
Lacasse
,
P. A.
,
Gruenberg
,
K. M.
, and
Ready
,
W. J.
,
2008
, “
Improved Fracture Toughness of Carbon Fiber Composite Functionalized With Multi Walled Nanotubes
,”
Carbon
,
46
(15), pp.
2026
2033
.10.1016/j.carbon.2008.08.010
22.
Sager
,
R. J.
,
Klein
,
P. J.
,
Lagoudas
,
D. C.
,
Zhang
,
Q.
,
Liu
,
J.
,
Dai
,
L.
, and
Baur
,
J. W.
,
2009
, “
Effect of Carbon Nanotubes on the Interfacial Shear Strength of T650 Carbon Fiber in an Epoxy Matrix
,”
Compos. Sci. Technol.
,
69
(7–8), pp.
898
904
.10.1016/j.compscitech.2008.12.021
23.
Garcia
,
E. J.
,
Wardle
,
B. L.
,
Hart
,
A. J.
, and
Yamamoto
,
N.
,
2008
, “
Fabrication and Multifunctional Properties of a Hybrid Laminate With Aligned Carbon Nanotubes Grown In Situ
,”
Compos. Sci. Technol.
,
68
(
9
), pp.
2034
2041
.10.1016/j.compscitech.2008.02.028
24.
Yamamoto
,
N.
,
Hart
,
A. J.
,
Garcia
,
E. J.
,
Wicks
,
S. S.
,
Duong
,
H. M.
,
Slocum
,
A. H.
, and
Wardle
,
B. L.
,
2009
, “
High-Yield Growth and Morphology Control of Aligned Carbon Nanotubes on Ceramic Fibers for Multifunctional Enhancement of Structural Composites
,”
Carbon
,
47
(
3
), pp.
551
560
.10.1016/j.carbon.2008.10.030
25.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2011
, “
Micromechanical Analysis of Fuzzy Fiber Reinforced Composites
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
149
166
.10.1007/s10999-011-9156-4
26.
Chatzigeorgiou
,
G.
,
Efendiev
,
Y.
, and
Lagoudas
,
D. C.
,
2011
, “
Homogenization of Aligned “Fuzzy Fiber” Composites
,”
Int. J. Solids Struct.
,
48
(
19
), pp.
2668
2680
.10.1016/j.ijsolstr.2011.05.011
27.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2012
, “
Effective Properties of a Novel Composite Reinforced With Short Carbon Fibers and Radially Aligned Carbon Nanotubes
,”
Mech. Mater.
,
53
, pp.
47
60
.10.1016/j.mechmat.2012.05.008
28.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2013
, “
Effect of Carbon Nanotube Waviness on the Elastic Properties of the Fuzzy Fiber Reinforced Composites
,”
ASME J. Appl. Mech.
,
80
(2), p.
021010
.10.1115/1.4007722
29.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2013
, “
Thermoelastic Properties of a Novel Fuzzy Fiber-Reinforced Composite
,”
ASME J. Appl. Mech.
,
80
(6), p.
061011
.10.1115/1.4023691
30.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2014
, “
Improved Thermoelastic Coefficients of a Novel Short Fuzzy Fiber-Reinforced Composite With Wavy Carbon Nanotubes
,”
J. Mech. Mater. Struct.
,
9
(
1
), pp.
1
25
.10.2140/jomms.2014.9.1
31.
He
,
J.
,
Beyerlein
,
I. J.
, and
Clarke
,
D. R.
,
1999
, “
Load Transfer From Broken Fibers in Continuous Fiber Al2O3-Al Composites and Dependence on Local Volume Fraction
,”
J. Mech. Phys. Solids
,
47
(3), pp.
465
502
.10.1016/S0022-5096(98)00053-2
32.
Gao
,
X. L.
, and
Li
,
K.
,
2005
, “
A Shear-Lag Model for Carbon Nanotube-Reinforced Polymer Composites
,”
Int. J. Solids Struct.
,
42
(5–6), pp.
1649
1667
.10.1016/j.ijsolstr.2004.08.020
33.
Zhang
,
Y. C.
, and
Wang
,
X.
,
2005
, “
Thermal Effects on Interfacial Stress Transfer Characteristics of Carbon Nanotubes/Polymer Composites
,”
Int. J. Solids Struct.
,
42
(
20
), pp.
5399
5412
.10.1016/j.ijsolstr.2005.02.038
34.
Jiang
,
L. Y.
,
Huang
,
Y.
,
Jiang
,
H.
,
Ravichandran
,
G.
,
Gao
,
H.
,
Hwang
,
K. C.
, and
Liu
,
B.
,
2006
, “
A Cohesive Law for Carbon Nanotube/Polymer Interfaces Based on the van der Waals Force
,”
J. Mech. Phys. Solids
,
54
(11), pp.
2436
2452
.10.1016/j.jmps.2006.04.009
35.
Li
,
K.
, and
Saigal
,
S.
,
2007
, “
Micromechanical Modeling of Stress Transfer in Carbon Nanotube Reinforced Polymer Composites
,”
Mater. Sci. Eng., A
,
457
(1–2), pp.
44
57
.10.1016/j.msea.2006.12.018
36.
Zhang
,
J.
, and
He
,
C.
,
2008
, “
A Three-Phase Cylindrical Shear-Lag Model for Carbon Nanotube Composites
,”
Acta Mech.
,
196
(1–2), pp.
33
54
.10.1007/s00707-007-0489-x
37.
Ang
,
K. K.
, and
Ahmed
,
K. S.
,
2013
, “
An Improved Shear-Lag Model for Carbon Nanotube Reinforced Polymer Composites
,”
Composites, Part B
,
50
, pp.
7
14
.10.1016/j.compositesb.2013.01.016
38.
Ray
,
M. C.
,
Guzman de Villoria
,
R.
, and
Wardle
,
B. L.
,
2009
, “
Load Transfer Analysis in Short Carbon Fibers With Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix
,”
J. Adv. Mater.
,
41
(
4
), pp.
82
94
, available at: http://hdl.handle.net/1721.1/71852
39.
Pavia
,
F.
, and
Curtin
,
W. A.
,
2012
, “
Optimizing Strength and Toughness of Nano Fiber-Reinforced CMCs
,”
J. Mech. Phys. Solids
,
60
(9), pp.
1688
1702
.10.1016/j.jmps.2012.04.005
40.
Kotha
,
S. P.
,
Li
,
Y.
, and
Guzelsu
,
N.
,
2001
, “
Micromechanical Model of Nacre Tested in Tension
,”
J. Mater. Sci.
,
36
(8), pp.
2001
2007
.10.1023/A:1017526830874
41.
Gao
,
H.
,
Ji
,
B.
,
Buehler
,
M. J.
, and
Yao
,
H.
,
2004
, “
Flaw Tolerant Bulk and Surface Nanostructures of Biological Systems
,”
Mech. Chem. Biosyst.
,
1
(1), pp.
37
52
.
42.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
How Do Slender Mineral Crystals Resist Buckling in Biological Materials?
,”
Philos. Mag. Lett.
,
84
(
10
), pp.
631
641
.10.1080/09500830512331329141
43.
Ji
,
B.
, and
Gao
,
H.
,
2004
, “
Mechanical Properties of Nanostructure of Biological Materials
,”
J. Mech. Phys. Solids
,
52
(9), pp.
1963
1990
.10.1016/j.jmps.2004.03.006
44.
Ji
,
B.
, and
Gao
,
H.
,
2006
, “
Elastic Properties of Nanocomposite Structure of Bone
,”
Compos. Sci. Technol.
,
66
(9), pp.
1212
1218
.10.1016/j.compscitech.2005.10.017
45.
Zhang
,
Z. Q.
,
Liu
,
B.
,
Huang
,
Y.
,
Hwang
,
K. C.
, and
Gao
,
H.
,
2010
, “
Mechanical Properties of Unidirectional Nanocomposites With Non-Uniformly or Randomly Staggered Platelet Distribution
,”
J. Mech. Phys. Solids
,
58
(10), pp.
1646
1660
.10.1016/j.jmps.2010.07.004
46.
Zhang
,
Z.
,
Zhang
,
Y. W.
, and
Gao
,
H.
,
2010
, “
On Optimal Hierarchy of Load-Bearing Biological Materials
,”
Proc. R. Soc. B.
,
278
(1705), pp.
519
525
.10.1098/rspb.2010.1093
47.
Bar-On
,
B.
, and
Wagner
,
H. D.
,
2011
, “
Mechanical Model for Staggered Bio-Structures
,”
J. Mech. Phys. Solids
,
59
(9), pp.
1685
1701
.10.1016/j.jmps.2011.06.005
48.
Lei
,
H. F.
,
Zhang
,
Z. Q.
, and
Liu
,
B.
,
2012
, “
Effect of Fiber Arrangement on Mechanical Properties of Short Fiber Reinforced Composites
,”
Compos. Sci. Technol.
,
72
(4), pp.
506
514
.10.1016/j.compscitech.2011.12.011
49.
Ray
,
M. C.
, and
Kundalwal
,
S. I.
,
2013
, “
Effect of Carbon Nanotube Waviness on the Load Transfer Characteristics of Short Fuzzy Fiber-Reinforced Composite
,”
ASCE J. Nanomech. Micromech.
,
4
(2), p.
A4013010
.10.1061/(ASCE)NM.2153-5477.0000082
50.
Ray
,
M. C.
, and
Kundalwal
,
S. I.
,
2014
, “
A Thermomechanical Shear Lag Analysis of Short Fuzzy Fiber Reinforced Composite Containing Wavy Carbon Nanotubes
,”
Eur. J. Mech. Solids
,
44
, pp.
41
60
.10.1016/j.euromechsol.2013.10.001
51.
Kundalwal
,
S. I.
, and
Ray
,
M. C.
,
2014
, “
Shear Lag Analysis of a Novel Short Fuzzy Fiber-Reinforced Composite
,”
Acta Mech.
(in press).10.1007/s00707-014-1095-3
52.
Mori
,
T.
, and
Tanaka
,
K.
,
1973
, “
Average Stress in Matrix and Average Elastic Energy of Materials With Misfitting Inclusions
,”
Acta Metall.
,
21
(
5
), pp.
571
574
.10.1016/0001-6160(73)90064-3
53.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
A Closed-Form, Hierarchical, Multi-Interphase Model for Composites—Derivation, Verification and Application to Nanocomposites
,”
J. Mech. Phys. Solids
,
59
(1), pp.
43
63
.10.1016/j.jmps.2010.09.015
54.
Li
,
Y.
,
Waas
,
A. M.
, and
Arruda
,
E. M.
,
2011
, “
The Effects of the Interphase and Strain Gradients on the Elasticity of Layer by Layer (LBL) Polymer/Clay Nanocomposites
,”
Int. J. Solids Struct.
,
48
(6), pp.
1044
1053
.10.1016/j.ijsolstr.2010.12.008
55.
Wernik
,
J. M.
,
Cornwell-Mott
,
B. J.
, and
Meguid
,
S. A.
,
2012
, “
Determination of the Interfacial Properties of Carbon Nanotube Reinforced Polymer Composites Using Atomistic-Based Continuum Model
,”
Int. J. Solids Struct.
,
49
(13), pp.
1852
1863
.10.1016/j.ijsolstr.2012.03.024
56.
Dunn
,
M. L.
, and
Ledbetter
,
H.
,
1995
, “
Elastic Moduli of Composites Reinforced by Multiphase Particles
,”
ASME J. Appl. Mech.
,
62
(
4
), pp.
1023
1028
.10.1115/1.2896038
57.
Qui
,
Y. P.
, and
Weng
,
G. J.
,
1990
, “
On the Application of Mori-Tanaka's Theory Involving Transversely Isotropic Spheroidal Inclusions
,”
Int. J. Eng. Sci.
,
28
(
11
), pp.
1121
1137
.10.1016/0020-7225(90)90112-V
58.
Cowin
,
S. C.
, and
Fraldi
,
M.
,
2005
, “
On Singularities Associated With the Curvilinear Anisotropic Elastic Symmetries
,”
Int. J. Nonlinear Mech.
,
40
(2–3), pp.
361
371
.10.1016/j.ijnonlinmec.2004.07.005
59.
Nairn
,
J. A.
,
1997
, “
On the Use of Shear-Lag Methods for Analysis of Stress Transfer in Unidirectional Composites
,”
Mech. Mater.
,
26
(
2
), pp.
63
80
.10.1016/S0167-6636(97)00023-9
60.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
,
New York
.
61.
Hashin
,
Z.
, and
Rosen
,
B. W.
,
1964
, “
The Elastic Moduli of Fiber-Reinforced Materials
,”
ASME J. Appl. Mech.
,
31
(2), pp.
223
232
.10.1115/1.3629590
62.
Honjo
,
K.
,
2007
, “
Thermal Stresses and Effective Properties Calculated for Fiber Composites Using Actual Cylindrically-Anisotropic Properties of Interfacial Carbon Coating
,”
Carbon
,
45
(
4
), pp.
865
872
.10.1016/j.carbon.2006.11.007
63.
Odegard
,
G. M.
,
Clancy
,
T. C.
, and
Gates
,
T. S.
,
2005
, “
Modeling of the Mechanical Properties of Nanoparticle/Polymer Composites
,”
Polymer
,
46
(
2
), pp.
553
562
.10.1016/j.polymer.2004.11.022
64.
Karami
,
G.
, and
Garnich
,
M.
,
2005
, “
Micromechanical Study of Thermoelastic Behavior of Composites With Periodic Fiber Waviness
,”
Composites, Part B
,
36
(3), pp.
241
248
.10.1016/j.compositesb.2004.09.005
You do not currently have access to this content.