In this work, the effect of the concentration-dependent chemical-expansion coefficient, β, on the chemo-elastic field in lithium-ion cathode particles is examined. To accomplish this, an isotropic linear-elastic model is developed for a single idealistic particle subjected to potentiostatic-discharge and charge conditions. It is shown that β can be a key parameter in demarcating the chemo-stress–strain state of the cathode material undergoing nonlinear volumetric strains. As an example, such strains develop in the hexagonal-to-monoclinic-phase region of LixCoO2 (0.37 ≤ x ≤ 0.55) and, subsequently, the corresponding β is a linear function of concentration. Previous studies have assumed a constant value for β. Findings suggest that the composition-generated chemo-elastic field that is based on a linear-β dramatically affects both the interdiffusion and the mechanical behavior of the LixCoO2 cathode particle. Because the chemo-elastic phenomena emanate in a reciprocal fashion, the resulting linear β-based hydrostatic-stress gradients significantly aid the diffusion of lithium. Thus, diffusion is accelerated in either electrochemical process that the cathode material undergoes.

References

1.
Malavé
,
V.
,
Berger
,
J. R.
,
Zhu
,
H.
, and
Kee
,
R. J.
,
2014
, “
A Computational Model of the Mechanical Behavior Within Reconstructed LixCoO2 Li-Ion Battery Cathode Particles
,”
Electrochim. Acta
,
130
, pp.
707
717
.10.1016/j.electacta.2014.03.113
2.
Larché
,
F. C.
, and
Cahn
,
J. W.
,
1985
, “
The Interactions of Composition and Stress in Crystalline Solids
,”
Acta Metall.
,
33
(3), pp.
331
357
.10.1016/0001-6160(85)90077-X
3.
Bohn
,
E.
,
Eckl
,
T.
,
Kamlah
,
M.
, and
McMeeking
,
R.
,
2013
, “
A Model for Lithium Diffusion and Stress Generation in an Intercalation Storage Particle With Phase Change
,”
J. Electrochem. Soc.
,
160
(10), pp.
A1638
A1652
.10.1149/2.011310jes
4.
Qi
,
Y.
,
Guo
,
H.
,
Hector
,
L. G.
, and
Timmons
,
A.
,
2010
, “
Threefold Increase in the Young's Modulus of Graphite Negative Electrode During Lithium Intercalation
,”
J. Electrochem. Soc.
,
157
(5), pp.
A558
A566
.10.1149/1.3327913
5.
Deshpande
,
R.
,
Qi
,
Y.
, and
Cheng
,
Y.-T.
,
2010
, “
Effects of Concentration-Dependent Elastic Modulus on Diffusion-Induced Stresses for Battery Applications
,”
J. Electrochem. Soc.
,
157
(8), pp.
A967
A971
.10.1149/1.3454762
6.
Shenoy
,
V. B.
,
Johari
,
P.
, and
Qi
,
Y.
,
2010
, “
Elastic Softening of Amorphous and Crystalline Li-Si Phases With Increasing Li Concentration: A First-Principles Study
,”
J. Power Sources
,
195
(19), pp.
6825
6830
.10.1016/j.jpowsour.2010.04.044
7.
Gao
,
Y. F.
, and
Zhou
,
M.
,
2011
, “
Strong Stress-Enhanced Diffusion in Amorphous Lithium Alloy Nanowire Electrodes
,”
J. Appl. Phys.
,
109
(1), p.
014310
.10.1063/1.3530738
8.
Yang
,
B.
,
He
,
Y.-P.
,
Irsa
,
J.
,
Lundgren
,
C. A.
,
Ratchford
,
J. B.
, and
Zhao
,
Y.-P.
,
2012
, “
Effects of Composition-Dependent Modulus, Finite Concentration and Boundary Constraint on Li-Ion Diffusion and Stresses in a Bilayer Cu-Coated Si Nano-Anode
,”
J. Power Sources
,
204
, pp.
168
176
.10.1016/j.jpowsour.2012.01.029
9.
Stournara
,
M. E.
,
Guduru
,
P. R.
, and
Shenoy
,
V. B.
,
2012
, “
Elastic Behavior of Crystalline Li-Sn Phases With Increasing Li Concentration
,”
J. Power Sources
,
208
, pp.
165
169
.10.1016/j.jpowsour.2012.02.022
10.
He
,
Y.-L.
,
Hu
,
H. J.
,
Song
,
Y.-C.
,
Guo
,
Z.-S.
,
Liu
,
C.
, and
Zhang
,
J.-Q.
,
2014
, “
Effects of Concentration-Dependent Elastic Modulus on the Diffusion of Lithium Ions and Diffusion Induced Stress in Layered Battery Electrodes
,”
J. Power Sources
,
248
, pp.
517
523
.10.1016/j.jpowsour.2013.09.118
11.
Lantelme
,
F.
,
Groult
,
H.
, and
Kumagai
,
N.
,
2000
, “
Study of the Concentration-Dependent Diffusion in Lithium Batteries
,”
Electrochim. Acta
,
45
(19), pp.
3171
3180
.10.1016/S0013-4686(00)00474-6
12.
Renganathan
,
S.
, and
White
,
R. E.
,
2011
, “
Semianalytical Method of Solution for Solid Phase Diffusion in Lithium Ion Battery Electrodes: Variable Diffusion Coefficient
,”
J. Power Sources
,
196
(1), pp.
442
448
.10.1016/j.jpowsour.2010.06.081
13.
Crank
,
J.
,
1975
,
The Mathematics of Diffusion
,
Oxford University
,
New York
.
14.
Purkayastha
,
R. T.
, and
McMeeking
,
R. M.
,
2012
, “
An Integrated 2-D Model of a Lithium Ion Battery: The Effect of Material Parameters and Morphology on Storage Particle Stress
,”
Comput. Mech.
,
50
(2), pp.
209
227
.10.1007/s00466-012-0724-8
15.
Darling
,
R.
, and
Newman
,
J.
,
1998
, “
Diffusion in LiyMn2O4
,”
193rd Meeting of the Electrochemical Society, San Diego, CA, May 3–8
, Vol. 98–10, pp.
1
13
.
16.
Darling
,
R.
, and
Newman
,
J.
,
1999
, “
Dynamic Monte Carlo Simulations of Diffusion in LiyMn2O4
,”
J. Electrochem. Soc.
,
146
(10), pp.
3765
3772
.10.1149/1.1392547
17.
Purkayastha
,
R.
, and
McMeeking
,
R. M.
,
2012
, “
A Linearized Model for Lithium Ion Batteries and Maps for Their Performance and Failure
,”
ASME J. Appl. Mech.
,
79
(3), p.
031021
.10.1115/1.4005962
18.
Garcia
,
R. E.
,
Chiang
,
Y.-M.
,
Carter
,
W. C.
,
Limthongkul
,
P.
, and
Bishop
,
C. M.
,
2005
, “
Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
152
(1), pp.
A255
A263
.10.1149/1.1836132
19.
Zhang
,
X.
,
Shyy
,
W.
, and
Sastry
,
A. M.
,
2007
, “
Numerical Simulation of Intercalation-Induced Stress in Li-Ion Battery Electrode Particles
,”
J. Electrochem. Soc.
,
154
(10), pp.
A910
A916
.10.1149/1.2759840
20.
Zhang
,
X.
,
Sastry
,
A. M.
, and
Shyy
,
W.
,
2008
, “
Intercalation-Induced Stress and Heat Generation Within Single Lithium-Ion Battery Cathode Particles
,”
J. Electrochem. Soc.
,
155
(7), pp.
A542
A552
.10.1149/1.2926617
21.
Woodford
,
W. H.
,
Chiang
,
Y.-M.
, and
Carter
,
W. C.
,
2010
, “
Electrochemical Shock of Intercalation Electrodes: A Fracture Mechanics Analysis
,”
J. Electrochem. Soc.
,
157
(10), pp.
A1052
A1059
.10.1149/1.3464773
22.
Chung
,
D.-W.
,
Balke
,
N.
,
Kalinin
,
S. V.
, and
Garcia
,
R. E.
,
2011
, “
Virtual Electrochemical Strain Microscopy of Polycrystalline LiCoO2 Films
,”
J. Electrochem. Soc.
,
158
(10), pp.
A1083
A1089
.10.1149/1.3619775
23.
Park
,
J.
,
Lu
,
W.
, and
Sastry
,
A. M.
,
2011
, “
Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles Due to Coupled Phase Transition and Intercalation
,”
J. Electrochem. Soc.
,
158
(2), pp.
A201
A206
.10.1149/1.3526597
24.
Seo
,
J. H.
,
Chung
,
M.
,
Park
,
M.
,
Han
,
S. W.
,
Zhang
,
X.
, and
Sastry
,
A. M.
,
2011
, “
Generation of Realistic Particle Structures and Simulations of Internal Stress: A Numerical/AFM Study of LiMn2O4 Particles
,”
J. Electrochem. Soc.
,
158
(4), pp.
A434
A442
.10.1149/1.3552930
25.
Song
,
Y.
,
Lu
,
B.
,
Ji
,
X.
, and
Zhang
,
J.
,
2012
, “
Diffusion Induced Stresses in Cylindrical Lithium-Ion Batteries: Analytical Solutions and Design Insights
,”
J. Electrochem. Soc.
,
159
(12), pp.
A2060
A2068
.10.1149/2.079212jes
26.
Lim
,
C.
,
Yan
,
B.
,
Yin
,
L.
, and
Zhu
,
L.
,
2012
, “
Simulation of Diffusion-Induced Stress Using Reconstructed Electrodes Particle Structures Generated by Micro/Nano-CT
,”
Electrochim. Acta
,
75
, pp.
279
287
.10.1016/j.electacta.2012.04.120
27.
Yoshio
,
M.
,
Brodd
,
R. J.
, and
Kozawa
,
A.
, eds.,
2010
,
Lithium-Ion Batteries: Science and Technology
,
Springer
,
New York
.
28.
Reimers
,
J. N.
, and
Dahn
,
J. R.
,
1992
, “
Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2
,”
J. Electrochem. Soc.
,
139
(8), pp.
2091
2097
.10.1149/1.2221184
29.
Allen
,
J. L.
,
Ding
,
M. S.
,
Xu
,
K.
,
Zhang
,
S.
, and
Jow
,
T. R.
,
2004
, “
Li1+xFe1-xPO4: Electronically Conductive Lithium Iron Phospho-Olivines With Improved Electrochemical Performance
,” 205th Electrochemical Society Fall Meeting, Honolulu, HI, October 3–8, Vol. 28, pp.
198
204
.
30.
Ohzuku
,
T.
, and
Makimura
,
Y.
,
2006
, “
Formation of Solid Solution and Its Effect on Lithium Insertion Schemes for Advanced Lithium-Ion Batteries: X-Ray Absorption Spectroscopy and X-Ray Diffraction of LiCoO2, LiCo1∕2Ni1∕2O2, and LiNiO2
,”
Res. Chem. Intermed.
,
32
(5), pp.
507
521
.10.1163/156856706777973745
31.
Huggins
,
R. A.
,
2009
,
Advanced Batteries: Materials Science Aspects
,
Springer
,
New York
.
32.
Wakihara
,
M.
, and
Yamamoto
,
O.
, eds.,
1998
,
Lithium Ion Batteries: Fundamentals and Performance
,
Wiley
,
Weinheim
, Germany.
33.
Mal
,
A. K.
, and
Singh
,
S. J.
,
1991
,
Deformation of Elastic Solids
,
Prentice-Hall
,
Englewood Cliffs
, NJ.
34.
Yang
,
F.
,
2005
, “
Interaction Between Diffusion and Chemical Stresses
,”
Mater. Sci. Eng. A
,
409
(1–2), pp.
153
159
.10.1016/j.msea.2005.05.117
35.
Cheng
,
Y.-T.
, and
Verbrugge
,
M. W.
,
2009
, “
Evolution of Stress Within a Spherical Insertion Electrode Particle Under Potentiostatic and Galvanostatic Operation
,”
J. Power Sources
,
190
(2), pp.
453
460
.10.1016/j.jpowsour.2009.01.021
36.
Hao
,
F.
,
Gao
,
X.
, and
Fang
,
D.
,
2012
, “
Diffusion-Induced Stresses of Electrode Nanomaterials in Lithium-Ion Battery: The Effects of Surface Stress
,”
J. Appl. Phys.
,
112
(10), p.
103507
.10.1063/1.4767913
37.
Song
,
Y.
,
Shao
,
X.
,
Guo
,
Z.
, and
Zhang
,
J.
,
2013
, “
Role of Material Properties and Mechanical Constraint on Stress-Assisted Diffusion in Plate Electrodes of Lithium Ion Batteries
,”
J. Phys. D: Appl. Phys.
,
46
(10), p.
105307
.10.1088/0022-3727/46/10/105307
38.
Timoshenko
,
S.
, and
Goodier
,
J. N.
,
1970
,
Theory of Elasticity
,
McGraw-Hill
,
New York
.
39.
Smith
,
G. D.
,
1985
,
Numerical Solution of Partial Differential Equations
, 3rd ed.,
Oxford University
, Oxford, UK.
40.
Wiedemann
,
A. H.
,
Goldin
,
G. M.
,
Barnett
,
S. A.
,
Zhu
,
H.
, and
Kee
,
R. J.
,
2013
, “
Effects of Three-Dimensional Cathode Microstructure on the Performance of Lithium-Ion Battery Cathodes
,”
Electrochim. Acta
,
88
, pp.
580
588
.10.1016/j.electacta.2012.10.104
41.
Christensen
,
J.
, and
Newman
,
J.
,
2006
, “
A Mathematical Model of Stress Generation and Fracture in Lithium Manganese Oxide
,”
J. Electrochem. Soc.
,
153
(6), pp.
A1019
A1030
.10.1149/1.2185287
You do not currently have access to this content.