This paper presents an analysis of the effect of electric displacement saturation for a failing piezoelectric ceramic material based on a complex variable solution of a Mode III and a Mode I crack. This particular electric nonlinearity is caused by a reduction of the ionic movement in the material in the presence of high electric fields. Total and strain energy release rates are computed for varying far field stresses, electric displacements, and electric fields and compared for cases without and with full electric displacement saturation to further advance the understanding of failure initiation in piezoelectric ceramics.

References

1.
Jaffe
,
H.
,
1958
, “
Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
,
41
(
11
), pp.
494
498
.10.1111/j.1151-2916.1958.tb12903.x
2.
Nowacki
,
W.
,
1979
, “
Foundations of Linear Piezoelectricity
,”
Electromagnetic Interactions in Elastic Solids
,
H.
Parkus
, ed.
Springer
, Vienna, pp.
105
157
.
3.
Griffith
,
A.
,
1921
, “
The Phenomena of Rupture and Flow in Solids
,”
Philos. Trans. R. Soc. London, Ser. A
,
221
(582–593), pp.
163
198
.10.1098/rsta.1921.0006
4.
Irwin
,
G. R.
,
1956
, “
Onset of Fast Crack Propagation in High Strength Steel and Aluminum Alloys
,” U.S. Naval Research Laboratory, Washington, DC, NRL Report No. 4763.
5.
Irwin
,
G. R.
,
1957
, “
Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate
,”
ASME J. Appl. Mech.
,
24
(3), pp.
361
364
.
6.
Rice
,
J.
,
1968
, “
A Path-Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
(2), pp.
379
386
.10.1115/1.3601206
7.
Li
,
S.
,
Linder
,
C.
, and
Foulk
III,
J.
,
2007
, “
On Configurational Compatibility and Multiscale Energy Momentum Tensors
,”
J. Mech. Phys. Solids
,
55
(
5
), pp.
980
1000
.10.1016/j.jmps.2006.11.002
8.
Eshelby
,
J. D.
,
Read
,
W. T.
, and
Shockley
,
W.
,
1953
, “
Anisotropic Elasticity With Applications to Dislocation Theory
,”
Acta Metall.
,
1
(
3
), pp.
251
259
.10.1016/0001-6160(53)90099-6
9.
Lekhnitskii
,
S. G.
,
1950
,
Theory of Elasticity of an Anisotropic Elastic Body
,
Gostekhizdat
,
Moscow
.
10.
Stroh
,
A. N.
,
1958
, “
Dislocations and Cracks in Anisotropic Elasticity
,”
Philos. Mag.
,
3
(30), pp.
625
646
.10.1080/14786435808565804
11.
Parton
,
V. Z.
,
1976
, “
Fracture Mechanics of Piezoelectric Materials
,”
Acta Astronaut.
,
3
(9–10), pp.
671
683
.10.1016/0094-5765(76)90105-3
12.
Pak
,
Y. E.
,
1990
, “
Crack Extension Force in a Piezoelectric Material
,”
ASME J. Appl. Mech.
,
57
(3), pp.
647
653
.10.1115/1.2897071
13.
Pak
,
Y. E.
,
1992
, “
Linear Electro-Elastic Fracture Mechanics of Piezoelectric Materials
,”
Int. J. Fract. Mech.
,
54
(
1
), pp.
79
100
.10.1007/BF00040857
14.
Suo
,
Z.
,
Kuo
,
C.
,
Barnett
,
D.
, and
Willis
,
J.
,
1992
, “
Fracture Mechanics for Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
40
(
4
), pp.
739
765
.10.1016/0022-5096(92)90002-J
15.
Park
,
S.
,
1994
, “
Fracture Behavior of Piezoelectric Materials
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
16.
Tobin
,
A. G.
, and
Pak
,
Y. E.
,
1993
, “
Effect of Electric Fields on Fracture Behavior of PZT Ceramics
,”
Proc. SPIE
,
1916
, pp.
78
86
.10.1117/12.148506
17.
Park
,
S.
, and
Sun
,
C. T.
,
1995
, “
Fracture Criteria for Piezoelectric Ceramics
,”
J. Am. Ceram. Soc.
,
78
(
6
), pp.
1475
1480
.10.1111/j.1151-2916.1995.tb08840.x
18.
Wang
,
H.
, and
Singh
,
R. N.
,
1997
, “
Crack Propagation in Piezoelectric Ceramics: Effects of Applied Electric Fields
,”
J. Appl. Phys.
,
81
(11), pp.
7471
7479
.10.1063/1.365290
19.
Fu
,
R.
, and
Zhang
,
T. Y.
,
2000
, “
Effects of an Electric Field on the Fracture Toughness of Poled Lead Zirconate Titanate Ceramics
,”
J. Am. Ceram. Soc.
,
83
(5), pp.
1215
1218
.10.1111/j.1151-2916.2000.tb01356.x
20.
Park
,
S.
, and
Sun
,
C. T.
,
1995
, “
Effect of Electric Field on Fracture of Piezoelectric Ceramics
,”
Int. J. Fract. Mech.
,
70
(
3
), pp.
203
216
.10.1007/BF00012935
21.
Gao
,
H.
,
Zhang
,
T.
, and
Tong
,
P.
,
1997
, “
Local and Global Energy Release Rates for an Electrically Yielded Crack in a Piezoelectric Ceramic
,”
J. Mech. Phys. Solids
,
45
(4), pp.
491
510
.10.1016/S0022-5096(96)00108-1
22.
Linder
,
C.
, and
Miehe
,
C.
,
2012
, “
Effect of Electric Displacement Saturation on the Hysteretic Behavior of Ferroelectric Ceramics and the Initiation and Propagation of Cracks in Piezoelectric Ceramics
,”
J. Mech. Phys. Solids
,
60
(5), pp.
882
903
.10.1016/j.jmps.2012.01.012
23.
Linder
,
C.
,
2012
, “
An Analysis of the Exponential Electric Displacement Saturation Model in Fracturing Piezoelectric Ceramics
,”
Tech. Mech.
,
32
(1), pp.
53
69
, available at: http://www.uni-magdeburg.de/ifme/zeitschrift_tm/2012_Heft1/04_Linder.pdf
24.
Simo
,
J. C.
,
Oliver
,
J.
, and
Armero
,
F.
,
1993
, “
An Analysis of Strong Discontinuities Induced by Strain-Softening in Rate-Independent Inelastic Solids
,”
Comput. Mech.
,
12
(5), pp.
277
296
.10.1007/BF00372173
25.
Linder
,
C.
, and
Armero
,
F.
,
2007
, “
Finite Elements With Embedded Strong Discontinuities for the Modeling of Failure in Solids
,”
Int. J. Numer. Methods Eng.
,
72
(12), pp.
1391
1433
.10.1002/nme.2042
26.
Linder
,
C.
, and
Armero
,
F.
,
2009
, “
Finite Elements With Embedded Branching
,”
Finite Elem. Anal. Des.
,
45
(4), pp.
280
293
.10.1016/j.finel.2008.10.012
27.
Armero
,
F.
, and
Linder
,
C.
,
2008
, “
New Finite Elements With Embedded Strong Discontinuities in the Finite Deformation Range
,”
Comput. Methods Appl. Mech. Eng.
,
197
(33–40), pp.
3138
3170
.10.1016/j.cma.2008.02.021
28.
Armero
,
F.
, and
Linder
,
C.
,
2009
, “
Numerical Simulation of Dynamic Fracture Using Finite Elements With Embedded Discontinuities
,”
Int. J. Fract. Mech.
,
160
(2), pp.
119
141
.10.1007/s10704-009-9413-9
29.
Linder
,
C.
, and
Raina
,
A.
,
2013
, “
A Strong Discontinuity Approach on Multiple Levels to Model Solids at Failure
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
558
583
.10.1016/j.cma.2012.07.005
30.
Linder
,
C.
, and
Zhang
,
X.
,
2013
, “
A Marching Cubes Based Failure Surface Propagation Concept for Three-Dimensional Finite Elements With Non-Planar Embedded Strong Discontinuities of Higher-Order Kinematics
,”
Int. J. Numer. Methods Eng.
,
96
(6), pp.
339
372
.10.1002/nme.4546
31.
Linder
,
C.
,
Rosato
,
D.
, and
Miehe
,
C.
,
2011
, “
New Finite Elements With Embedded Strong Discontinuities for the Modeling of Failure in Electromechanical Coupled Solids
,”
Comput. Methods Appl. Mech. Eng.
,
200
(1–4), pp.
141
161
.10.1016/j.cma.2010.07.021
32.
Linder
,
C.
, and
Zhang
,
X.
,
2014
, “
Three-Dimensional Finite Elements With Embedded Strong Discontinuities to Model Failure in Electromechanical Coupled Materials
,”
Comput. Methods Appl. Mech. Eng.
,
273
, pp.
143
160
.10.1016/j.cma.2014.01.021
33.
Schröder
,
J.
, and
Gross
,
D.
,
2004
, “
Invariant Formulation of the Electromechanical Enthalpy Function of Transversely Isotropic Piezoelectric Materials
,”
Arch. Appl. Mech.
,
73
(8), pp.
533
552
.10.1007/s00419-003-0294-5
34.
Barnett
,
D. M.
, and
Lothe
,
J.
,
1975
, “
Dislocations and Line Charges in Anisotropic Piezoelectric Insulators
,”
Phys. Status Solidi B
,
67
(
1
), pp.
105
111
.10.1002/pssb.2220670108
35.
Yang
,
W.
, and
Suo
,
Z.
,
1994
, “
Cracking in Ceramic Actuators Caused by Electrostriction
,”
J. Mech. Phys. Solids
,
42
(
4
), pp.
649
663
.10.1016/0022-5096(94)90056-6
36.
Lynch
,
C. S.
,
Yang
,
W.
,
Collier
,
L.
,
Suo
,
Z.
, and
McMeeking
,
R. M.
,
1995
, “
Electric Field Induced Cracking in Ferroelectric Ceramics
,”
Ferroelectrics
,
166
(
1
), pp.
11
30
.10.1080/00150199508223569
37.
Hao
,
T.
,
Gong
,
X.
, and
Suo
,
Z.
,
1996
, “
Fracture Mechanics for the Design of Ceramic Multilayer Actuators
,”
J. Mech. Phys. Solids
,
44
(
1
), pp.
23
48
.10.1016/0022-5096(95)00068-2
38.
Jona
,
F.
, and
Shirane
,
G.
,
1993
,
Ferroelectric Crystals
, Vol.
1
,
Dover Publications
, New York.
39.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.10.1016/0022-5096(60)90013-2
40.
Barenblatt
,
G.
,
1962
, “
The Mathematical Theory of Equilibrium Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
,
7
, pp.
55
129
.10.1016/S0065-2156(08)70121-2
You do not currently have access to this content.