An energy-based approach is presented to extract the thresholds on the transient dynamic response of step voltage driven dielectric elastomer actuators (DEAs). The proposed approach relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle followed by the application of an instability condition to extract the dynamic instability parameters. Explicit expressions are developed for the critical values of maximum stretch and the corresponding nominal electric field, thus circumventing the need to perform iterative time-integrations of the equation of motion. The underlying principles of the approach are enunciated for the neo-Hookean material model and further extended to analyze relatively complex multiparameter hyperelastic models (Mooney–Rivlin and Ogden) that are employed prevalently for investigating the behavior of DEAs. The dynamic instability parameters predicted using the energy method are validated by examining the time-history response of the actuator in the vicinity of the dynamic instability. The development of dynamic instability parameters is complemented by energy-based extraction of static instability parameters to facilitate a quick comparison between the two. It is inferred quantitatively that the nominal electric field sufficient to cause the dynamic instability and the corresponding thickness stretch is lower than those corresponding to the static instability. A set of representative case studies for multiparameter material models is presented at the end, which can be used as an input for further experimental corroboration. The results of the present investigation can find their potential use in the design of DEAs subjected to transient loading.

References

1.
Shankar
,
R.
,
Ghosh
,
T. K.
, and
Spontak
,
R. J.
,
2007
, “
Dielectric Elastomers as Next-Generation Polymeric Actuators
,”
Soft Matter
,
3
(
9
), pp.
1116
1129
.10.1039/b705737g
2.
O'Halloran
,
A.
,
O'Malley
,
F.
, and
McHugh
,
P.
,
2008
, “
A Review on Dielectric Elastomer Actuators, Technology, Applications, and Challenges
,”
J. Appl. Phys.
,
104
(
7
), p.
071101
.10.1063/1.2981642
3.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.10.1002/marc.200900425
4.
Suo
,
Z.
,
2010
, “
Theory of Dielectric Elastomers
,”
Acta Mech. Solida Sin.
,
23
(
6
), pp.
549
578
.10.1016/S0894-9166(11)60004-9
5.
Suo
,
Z.
,
2012
, “
Mechanics of Stretchable Electronics and Soft Machines
,”
MRS Bull.
,
37
(
3
), pp.
218
225
.10.1557/mrs.2012.32
6.
Wissler
,
M.
, and
Mazza
,
E.
,
2005
, “
Modeling and Simulation of Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
14
(
6
), pp.
1396
1402
.10.1088/0964-1726/14/6/032
7.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
.10.1126/science.287.5454.836
8.
Carpi
,
F.
,
De Rossi
,
D.
,
Kornbluh
,
R.
, and
Pelrine
,
R.
,
2008
,
Dielectric Elastomers as Electromechanical Transducers
,
Elsevier Ltd.
, Amsterdam.
9.
Dubois
,
P.
,
Rosset
,
S.
,
Niklaus
,
M.
,
Dadras
,
M.
, and
Shea
,
H.
,
2008
, “
Voltage Control of the Resonance Frequency of Dielectric Electroactive Polymer (DEAP) Membranes
,”
J. Microelectromech. Syst.
,
17
(
5
), pp.
1072
1081
.10.1109/JMEMS.2008.927741
10.
Li
,
T.
,
Qu
,
S.
, and
Yang
,
W.
,
2012
, “
Electromechanical and Dynamic Analyses of Tunable Dielectric Elastomer Resonator
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3754
3761
.10.1016/j.ijsolstr.2012.08.006
11.
Biddiss
,
E.
, and
Chau
,
T.
,
2008
, “
Dielectric Elastomers as Actuators for Upper Limb Prosthetics: Challenges and Opportunities
,”
Med. Eng. Phys.
,
30
(
4
), pp.
403
418
.10.1016/j.medengphy.2007.05.011
12.
Hochradel
,
K.
,
Rupitsch
,
S. J.
,
Sutor
,
A.
,
Lerch
,
R.
,
Vu
,
D. K.
, and
Steinmann
,
P.
,
2012
, “
Dynamic Performance of Dielectric Elastomers Utilized as Acoustic Actuators
,”
Appl. Phys. A: Mater. Sci. Process.
,
107
(
3
), pp.
531
538
.10.1007/s00339-012-6837-2
13.
Chakraborti
,
P.
,
Toprakci
,
H. A. K.
,
Yang
,
P.
,
Di Spigna
,
N.
,
Franzon
,
P.
, and
Ghosh
,
T.
,
2012
, “
A Compact Dielectric Elastomer Tubular Actuator for Refreshable Braille Displays
,”
Sens. Actuators, A
,
179
, pp.
151
157
.10.1016/j.sna.2012.02.004
14.
Koh
,
S. J. A.
,
Keplinger
,
C.
,
Li
,
T.
,
Bauer
,
S.
, and
Suo
,
Z.
,
2011
, “
Dielectric Elastomer Generators: How Much Energy Can be Converted?
,”
IEEE ASME Trans. Mechatron.
,
16
(
1
), pp.
33
41
.10.1109/TMECH.2010.2089635
15.
Wissler
,
M.
, and
Mazza
,
E.
,
2007
, “
Electromechanical Coupling in Dielectric Elastomer Actuators
,”
Sens. Actuators, A
,
138
(
2
), pp.
384
393
.10.1016/j.sna.2007.05.029
16.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
.10.1063/1.2768641
17.
Díaz-Calleja
,
R.
,
Riande
,
E.
, and
Sanchis
,
M. J.
,
2008
, “
On Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
93
(
10
), p.
101902
.10.1063/1.2972124
18.
Liu
,
Y.
,
Liu
,
L.
,
Yu
,
K.
,
Sun
,
S.
, and
Leng
,
J.
,
2009
, “
An Investigation on Electromechanical Stability of Dielectric Elastomers Undergoing Large Deformation
,”
Smart Mater. Struct.
,
18
(
9
), p.
095040
.10.1088/0964-1726/18/9/095040
19.
De Tommasi
,
D.
,
Puglisi
,
G.
,
Saccomandi
,
G.
, and
Zurlo
,
G.
,
2010
, “
Pull-In and Wrinkling Instabilities of Electroactive Dielectric Actuators
,”
J. Phys. D: Appl. Phys.
,
43
(
32
), p.
325501
.10.1088/0022-3727/43/32/325501
20.
Hodgins
,
M.
,
York
,
A.
, and
Seelecke
,
S.
,
2011
, “
Modeling and Experimental Validation of a Bi-Stable Out-of-Plane DEAP Actuator System
,”
Smart Mater. Struct.
,
20
(
9
), p.
094012
.10.1088/0964-1726/20/9/094012
21.
Rudykh
,
S.
,
Bhattacharya
,
K.
, and
Debotton
,
G.
,
2012
, “
Snap-Through Actuation of Thick-Wall Electroactive Balloons
,”
Int. J. Nonlinear Mech.
,
47
(
2
), pp.
206
209
.10.1016/j.ijnonlinmec.2011.05.006
22.
Wang
,
H.
,
Cai
,
S.
,
Carpi
,
F.
, and
Suo
,
Z.
,
2012
, “
Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031008
.10.1115/1.4005885
23.
Zhou
,
J.
,
Hong
,
W.
,
Zhao
,
X.
,
Zhang
,
Z.
, and
Suo
,
Z.
,
2008
, “
Propagation of Instability in Dielectric Elastomers
,”
Int. J. Solids Struct.
,
45
(
13
), pp.
3739
3750
.10.1016/j.ijsolstr.2007.09.031
24.
Leng
,
J.
,
Liu
,
L.
,
Liu
,
Y.
,
Yu
,
K.
, and
Sun
,
S.
,
2009
, “
Electromechanical Stability of Dielectric Elastomer
,”
Appl. Phys. Lett.
,
94
(
21
), p.
211901
.10.1063/1.3138153
25.
Xu
,
B. X.
,
Mueller
,
R.
,
Klassen
,
M.
, and
Gross
,
D.
,
2010
, “
On Electromechanical Stability Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
97
(
16
), p.
162908
.10.1063/1.3504702
26.
Li
,
B.
,
Zhou
,
J.
, and
Chen
,
H.
,
2011
, “
Electromechanical Stability in Charge-Controlled Dielectric Elastomer Actuation
,”
Appl. Phys. Lett.
,
99
(
24
), p.
244101
.10.1063/1.3670048
27.
Sheng
,
J.
,
Chen
,
H.
, and
Li
,
B.
,
2011
, “
Effect of Temperature on the Stability of Dielectric Elastomers
,”
J. Phys. D: Appl. Phys.
,
44
(
36
), p.
365406
.10.1088/0022-3727/44/36/365406
28.
Moscardo
,
M.
,
Zhao
,
X.
,
Suo
,
Z.
, and
Lapusta
,
Y.
,
2008
, “
On Designing Dielectric Elastomer Actuators
,”
J. Appl. Phys.
,
104
(
9
), p.
093503
.10.1063/1.3000440
29.
Kofod
,
G.
,
2008
, “
The Static Actuation of Dielectric Elastomer Actuators: How Does Pre-Stretch Improve Actuation?
,”
J. Phys. D: Appl. Phys.
,
41
(
21
), p.
215405
.10.1088/0022-3727/41/21/215405
30.
Jiménez
,
S. M. A.
, and
McMeeking
,
R. M.
,
2013
, “
Deformation Dependent Dielectric Permittivity and Its Effect on Actuator Performance and Stability
,”
Int. J. Nonlinear Mech.
,
57
, pp.
183
191
.10.1016/j.ijnonlinmec.2013.08.001
31.
Choi
,
H. R.
,
Ryew
,
S. M.
,
Jung
,
K. M.
,
Kim
,
H. M.
,
Jeon
,
J. W.
,
Nam
,
J. D.
,
Maeda
,
R.
, and
Tanie
,
K.
,
2002
, “
Soft Actuator for Robotic Applications Based on Dielectric Elastomer: Dynamic Analysis and Applications
,”
IEEE International Conference on Robotics and Automation
(
ICRA '02
),
Washington, DC
, May 11–15, Vol.
3
, pp.
3218
3223
.10.1109/ROBOT.2002.1013722
32.
Mockensturm
,
E.
, and
Goulbourne
,
N.
,
2006
, “
Dynamic Response of Dielectric Elastomers
,”
Int. J. Nonlinear Mech.
,
41
(
3
), pp.
388
395
.10.1016/j.ijnonlinmec.2005.08.007
33.
Fox
,
J. W.
, and
Goulbourne
,
N. C.
,
2008
, “
On the Dynamic Electromechanical Loading of Dielectric Elastomer Membranes
,”
J. Mech. Phys. Solids
,
56
(
8
), pp.
2669
2686
.10.1016/j.jmps.2008.03.007
34.
Son
,
S.
, and
Goulbourne
,
N. C.
,
2010
, “
Dynamic Response of Tubular Dielectric Elastomer Transducers
,”
Int. J. Solids Struct.
,
47
(
20
), pp.
2672
2679
.10.1016/j.ijsolstr.2010.05.019
35.
Fox
,
J. W.
, and
Goulbourne
,
N. C.
,
2009
, “
Electric Field-Induced Surface Transformations and Experimental Dynamic Characteristics of Dielectric Elastomer Membranes
,”
J. Mech. Phys. Solids
,
57
(
8
), pp.
1417
1435
.10.1016/j.jmps.2009.03.008
36.
Zhu
,
J.
,
Cai
,
S.
, and
Suo
,
Z.
,
2010
, “
Resonant Behavior of a Membrane of a Dielectric Elastomer
,”
Int. J. Solids Struct.
,
47
(
24
), pp.
3254
3262
.10.1016/j.ijsolstr.2010.08.008
37.
Feng
,
C.
,
Jiang
,
L.
, and
Lau
,
W. M.
,
2011
, “
Dynamic Characteristics of a Dielectric Elastomer-Based Microbeam Resonator With Small Vibration Amplitude
,”
J. Micromech. Microeng.
,
21
(
9
), p.
095002
.10.1088/0960-1317/21/9/095002
38.
Yong
,
H.
,
He
,
X.
, and
Zhou
,
Y.
,
2011
, “
Dynamics of a Thick-Walled Dielectric Elastomer Spherical Shell
,”
Int. J. Eng. Sci.
,
49
(
8
), pp.
792
800
.10.1016/j.ijengsci.2011.03.006
39.
Zhang
,
J.
,
Chen
,
H.
,
Sheng
,
J.
,
Liu
,
L.
,
Wang
,
Y.
, and
Jia
,
S.
,
2013
, “
Dynamic Performance of Dissipative Dielectric Elastomers Under Alternating Mechanical Load
,”
Appl. Phys. A: Mater. Sci. Process.
,
116
(1), pp.
59
67
.10.1007/s00339-013-8092-6
40.
Liu
,
L.
,
Chen
,
H.
,
Sheng
,
J.
,
Zhang
,
J.
,
Wang
,
Y.
, and
Jia
,
S.
,
2014
, “
Experimental Study on the Dynamic Response of In-Plane Deformation of Dielectric Elastomer Under Alternating Electric Load
,”
Smart Mater. Struct.
,
23
(
2
), p.
025037
.10.1088/0964-1726/23/2/025037
41.
Sheng
,
J.
,
Chen
,
H.
,
Li
,
B.
, and
Wang
,
Y.
,
2014
, “
Nonlinear Dynamic Characteristics of a Dielectric Elastomer Membrane Undergoing In-Plane Deformation
,”
Smart Mater. Struct.
,
23
(
4
), p.
045010
.10.1088/0964-1726/23/4/045010
42.
Wang
,
H.
,
Lei
,
M.
, and
Cai
,
S.
,
2013
, “
Viscoelastic Deformation of a Dielectric Elastomer Membrane Subject to Electromechanical Loads
,”
J. Appl. Phys.
,
113
(
21
), p.
213508
.10.1063/1.4807911
43.
Wang
,
J.
,
Nguyen
,
T. D.
, and
Park
,
H. S.
,
2014
, “
Electrostatically Driven Creep in Viscoelastic Dielectric Elastomers
,”
ASME J. Appl. Mech.
,
81
(
5
), p.
051006
.10.1115/1.4025999
44.
Loverich
,
J. J.
,
Kanno
,
I.
, and
Kotera
,
H.
,
2006
, “
Concepts for a New Class of All-Polymer Micropumps
,”
Lab Chip
,
6
(
9
), pp.
1147
1154
.10.1039/b605525g
45.
Lotz
,
P.
,
Matysek
,
M.
, and
Schlaak
,
H. F.
,
2011
, “
Fabrication and Application of Miniaturized Dielectric Elastomer Stack Actuators
,”
IEEE ASME Trans. Mechatron.
,
16
(
1
), pp.
58
66
.10.1109/TMECH.2010.2090164
46.
Park
,
H. S.
,
Suo
,
Z.
,
Zhou
,
J.
, and
Klein
,
P. A.
,
2012
, “
A Dynamic Finite Element Method for Inhomogeneous Deformation and Electromechanical Instability of Dielectric Elastomer Transducers
,”
Int. J. Solids Struct.
,
49
(
15–16
), pp.
2187
2194
.10.1016/j.ijsolstr.2012.04.031
47.
Wang
,
Y.
,
Xue
,
H.
,
Chen
,
H.
, and
Qiang
,
J.
,
2013
, “
A Dynamic Visco-Hyperelastic Model of Dielectric Elastomers and Their Energy Dissipation Characteristics
,”
Appl. Phys. A: Mater. Sci. Process.
,
112
(
2
), pp.
339
347
.10.1007/s00339-013-7740-1
48.
Iskandarani
,
Y.
, and
Karimi
,
H. R.
,
2013
, “
Dynamic Characterization for the Dielectric Electroactive Polymer Fundamental Sheet
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1457
1466
.10.1007/s00170-012-4423-6
49.
Sheng
,
J.
,
Chen
,
H.
,
Liu
,
L.
,
Zhang
,
J.
,
Wang
,
Y.
, and
Jia
,
S.
,
2013
, “
Dynamic Electromechanical Performance of Viscoelastic Dielectric Elastomers
,”
J. Appl. Phys.
,
114
(
13
), p.
134101
.10.1063/1.4823861
50.
Chakravarty
,
U. K.
,
2014
, “
On the Resonance Frequencies of a Membrane of a Dielectric Elastomer
,”
Mech. Res. Commun.
,
55
, pp.
72
76
.10.1016/j.mechrescom.2013.10.006
51.
Xu
,
B. X.
,
Mueller
,
R.
,
Theis
,
A.
,
Klassen
,
M.
, and
Gross
,
D.
,
2012
, “
Dynamic Analysis of Dielectric Elastomer Actuators
,”
Appl. Phys. Lett.
,
100
(
11
), p.
112903
.10.1063/1.3694267
52.
Nielson
,
G. N.
, and
Barbastathis
,
G.
,
2006
, “
Dynamic Pull-In of Parallel-Plate and Torsional Electrostatic MEMS Actuators
,”
J. Microelectromech. Syst.
,
15
(
4
), pp.
811
821
.10.1109/JMEMS.2006.879121
53.
Joglekar
,
M. M.
, and
Pawaskar
,
D. N.
,
2011
, “
Estimation of Oscillation Period/Switching Time for Electrostatically Actuated Microbeam Type Switches
,”
Int. J. Mech. Sci.
,
53
(
2
), pp.
116
125
.10.1016/j.ijmecsci.2010.12.001
54.
Joglekar
,
M. M.
, and
Pawaskar
,
D. N.
,
2012
, “
Shape Optimization of Electrostatically Actuated Microbeams for Extending Static and Dynamic Operating Ranges
,”
Struct. Mutlidisc. Optim.
,
46
(
6
), pp.
871
890
.10.1007/s00158-012-0804-6
55.
Lochmatter
,
P.
,
Kovacs
,
G.
, and
Michel
,
S.
,
2007
, “
Characterization of Dielectric Elastomer Actuators Based on a Hyperelastic Film Model
,”
Sens. Actuators, A
,
135
(
2
), pp.
748
757
.10.1016/j.sna.2006.08.006
56.
De Tommasi
,
D.
,
Puglisi
,
G.
, and
Zurlo
,
G.
,
2012
, “
Taut States of Dielectric Elastomer Membranes
,”
Int. J. Nonlinear Mech.
,
47
(
2
), pp.
355
361
.10.1016/j.ijnonlinmec.2011.08.002
57.
Zhu
,
J.
,
Stoyanov
,
H.
,
Kofod
,
G.
, and
Suo
,
Z.
,
2010
, “
Large Deformation and Electromechanical Instability of a Dielectric Elastomer Tube Actuator
,”
J. Appl. Phys.
,
108
(
7
), p.
074113
.10.1063/1.3490186
58.
Chakravarty
,
U. K.
, and
Albertani
,
R.
,
2012
, “
Experimental and Finite Element Modal Analysis of a Pliant Elastic Membrane for Micro Air Vehicles Applications
,”
ASME J. Appl. Mech.
,
79
(
2
), p.
021004
.10.1115/1.4005569
59.
Plante
,
J.-S.
, and
Dubowsky
,
S.
,
2006
, “
Large-Scale Failure Modes of Dielectric Elastomer Actuators
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7727
7751
.10.1016/j.ijsolstr.2006.03.026
60.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
,
326
(
1567
), pp.
565
584
.10.1098/rspa.1972.0026
61.
Mooney
,
M.
,
1940
, “
A Theory of Large Elastic Deformation
,”
J. Appl. Phys.
,
11
(
9
), pp.
582
592
.10.1063/1.1712836
62.
Niu
,
X.
,
Stoyanov
,
H.
,
Hu
,
W.
,
Leo
,
R.
,
Brochu
,
P.
, and
Pei
,
Q.
,
2013
, “
Synthesizing a New Dielectric Elastomer Exhibiting Large Actuation Strain and Suppressed Electromechanical Instability Without Prestretching
,”
J. Polym. Sci., Part B: Polym. Phys.
,
51
(
3
), pp.
197
206
.10.1002/polb.23197
You do not currently have access to this content.