We explore whether the continuum scaling behavior of the fracture energy of metals extends down to the atomistic level. We use an embedded atom method (EAM) model of Ni, thus bypassing the need to model strain-gradient plasticity at the continuum level. The calculations are performed with a number of different 3D periodic size cells using standard molecular dynamics (MD) techniques. A void nucleus of a single vacancy is placed in each cell and the cell is then expanded through repeated NVT MD increments. For each displacement, we then determine which cell size has the lowest energy. The optimal cell size and energy bear a power-law relation to the opening displacement that is consistent with continuum estimates based on strain-gradient plasticity (Fokoua et al., 2014, “Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation,” Arch. Ration. Mech. Anal. (in press); Fokoua et al., 2014, “Optimal Scaling Laws for Ductile Fracture Derived From Strain-Gradient Microplasticity,” J. Mech. Phys. Solids, 62, pp. 295–311). The persistence of power-law scaling of the fracture energy down to the atomistic level is remarkable.

References

1.
Hutchison
,
J. W.
,
1979
,
A Course on Nonlinear Fracture Mechanics
,
Department of Solid Mechanics, TU Denmark
,
Lyngby, Denmark
.
2.
Kanninen
,
M. F.
, and
Popelar
,
C. H.
,
1985
, “
Advanced Fracture Mechanics
,”
Oxford Engineering Science Series
,
Oxford University Press
,
New York
.
3.
Ritchie
,
R. O.
,
Knott
,
J. F.
, and
Rice
,
J. R.
,
1973
, “
Relationship Between Critical Tensile Stress and Fracture Toughness in Mild-Steel
,”
J. Mech. Phys. Solids
,
21
(
6
), pp.
395
410
.10.1016/0022-5096(73)90008-2
4.
Rice
,
J. R.
, and
Thomson
,
R.
,
1974
, “
Ductile Versus Brittle Behavior of Crystals
,”
Philos. Mag.
,
29
(
1
), pp.
73
97
.10.1080/14786437408213555
5.
Needleman
,
A.
,
1982
, “
Continuum Analyses of Localization and Ductile Fracture
,”
J. Metals
,
35
(
12
), p.
A70
.
6.
Tvergaard
,
V.
,
1982
, “
Ductile Fracture by Cavity Nucleation Between Larger Voids
,”
J. Mech. Phys. Solids
,
30
(
4
), pp.
265
286
.10.1016/0022-5096(82)90033-3
7.
Becker
,
R.
,
Needleman
,
A.
,
Richmond
,
O.
, and
Tvergaard
,
V.
,
1988
, “
Void Growth and Failure in Notched Bars
,”
J. Mech. Phys. Solids
,
36
(
3
), pp.
317
351
.10.1016/0022-5096(88)90014-2
8.
Koplik
,
J.
, and
Needleman
,
A.
,
1988
, “
Void Growth and Coalescence in Porous Plastic Solids
,”
Int. J. Solids Struct.
,
24
(
8
), pp.
835
853
.10.1016/0020-7683(88)90051-0
9.
Becker
,
R.
,
Needleman
,
A.
,
Suresh
,
S.
,
Tvergaard
,
V.
, and
Vasudevan
,
A. K.
,
1989
, “
An Analysis of Ductile Failure by Grain-Boundary Void Growth
,”
Acta Metall.
,
37
(
1
), pp.
99
120
.10.1016/0001-6160(89)90270-8
10.
Tvergaard
,
V.
,
1990
, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
27
, pp.
83
151
.10.1016/S0065-2156(08)70195-9
11.
Needleman
,
A.
, and
Tvergaard
,
V.
,
1991
, “
A Numerical Study of Void Distribution Effects on Dynamic, Ductile Crack-Growth
,”
Eng. Fract. Mech.
,
38
(
2–3
), pp.
157
173
.10.1016/0013-7944(91)90079-G
12.
Tvergaard
,
V.
,
1992
, “
A Numerical-Analysis of 3D Localization Failure by a Void-Sheet Mechanism
,”
Eng. Fract. Mech.
,
41
(
6
), pp.
787
803
.10.1016/0013-7944(92)90232-4
13.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
2002
, “
Two Mechanisms of Ductile Fracture: Void by Void Growth Versus Multiple Void Interaction
,”
Int. J. Solids Struct.
,
39
(
13–14
), pp.
3581
3597
.10.1016/S0020-7683(02)00168-3
14.
Pardoen
,
T.
, and
Hutchinson
,
J. W.
,
2003
, “
Micromechanics-Based Model for Trends in Toughness of Ductile Metals
,”
Acta Mater.
,
51
(
1
), pp.
133
148
.10.1016/S1359-6454(02)00386-5
15.
Tvergaard
,
V.
, and
Niordson
,
C.
,
2004
, “
Nonlocal Plasticity Effects on Interaction of Different Size Voids
,”
Int. J. Plast.
,
20
(
1
), pp.
107
120
.10.1016/S0749-6419(03)00036-6
16.
Tvergaard
,
V.
,
2007
, “
Discrete Modelling of Ductile Crack Growth by Void Growth to Coalescence
,”
Int. J. Fract.
,
148
(
1
), pp.
1
12
.10.1007/s10704-007-9172-4
17.
Xue
,
Z.
,
Pontin
,
M. G.
,
Zok
,
F. W.
, and
Hutchinson
,
J. W.
,
2010
, “
Calibration Procedures for a Computational Model of Ductile Fracture
,”
Eng. Fract. Mech.
,
77
(
3
), pp.
492
509
.10.1016/j.engfracmech.2009.10.007
18.
Nielsen
,
K. L.
, and
Tvergaard
,
V.
,
2011
, “
Failure by Void Coalescence in Metallic Materials Containing Primary and Secondary Voids Subject to Intense Shearing
,”
Int. J. Solids Struct.
,
48
(
9
), pp.
1255
1267
.10.1016/j.ijsolstr.2011.01.008
19.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1997
, “
Nonlocal Effects on Localization in a Void-Sheet
,”
Int. J. Solids Struct.
,
34
(
18
), pp.
2221
2238
.10.1016/S0020-7683(96)00140-0
20.
Borg
,
U.
,
Niordson
,
C. F.
,
Fleck
,
N. A.
, and
Tvergaard
,
V.
,
2006
, “
A Viscoplastic Strain Gradient Analysis of Materials With Voids or Inclusions
,”
Int. J. Solids Struct.
,
43
(
16
), pp.
4906
4916
.10.1016/j.ijsolstr.2005.05.022
21.
Niordson
,
C. F.
,
2008
, “
Void Growth to Coalescence in a Non-Local Material
,”
Eur. J. Mech. A-Solids
,
27
(
2
), pp.
222
233
.10.1016/j.euromechsol.2007.07.001
22.
Nielsen
,
K. L.
,
Niordson
,
C. F.
, and
Hutchinson
,
J. W.
,
2012
, “
Strain Gradient Effects on Steady State Crack Growth in Rate-Sensitive Materials
,”
Eng. Fract. Mech.
,
96
, pp.
61
71
.10.1016/j.engfracmech.2012.06.022
23.
Needleman
,
A.
,
Tvergaard
,
V.
, and
Bouchaud
,
E.
,
2012
, “
Prediction of Ductile Fracture Surface Roughness Scaling
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031015
.10.1115/1.4005959
24.
Fokoua
,
L.
,
Conti
,
S.
, and
Ortiz
,
M.
,
2014
, “
Optimal Scaling in Solids Undergoing Ductile Fracture by Void Sheet Formation
,”
Arch. Ration. Mech. Anal.
,
212
(
1
), pp.
331
357
.10.1007/s00205-013-0687-8
25.
Fokoua
,
L.
,
Conti
,
S.
, and
Ortiz
,
M.
,
2014
, “
Optimal Scaling Laws for Ductile Fracture Derived From Strain-Gradient Microplasticity
,”
J. Mech. Phys. Solids
,
62
, pp.
295
311
.10.1016/j.jmps.2013.11.002
26.
Angelo
,
J. E.
,
Moody
,
N. R.
, and
Baskes
,
M. I.
,
1995
, “
Trapping of Hydrogen to Lattice Defects in Nickel
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
3
), pp.
289
307
.10.1088/0965-0393/3/3/001
27.
Baskes
,
M. I.
,
Sha
,
X.
,
Angelo
,
J. E.
, and
Moody
,
N. R.
,
1997
, “
Trapping of Hydrogen to Lattice Defects in Nickel
,”
Modell. Simul. Mater. Sci. Eng.
,
5
(
6
), pp.
651
652
.10.1088/0965-0393/5/6/007
28.
Nosé
,
S.
,
1984
, “
A Unified Formulation of the Constant Temperature Molecular Dynamics Methods
,”
J. Chem. Phys.
,
81
(
1
), pp.
511
519
.10.1063/1.447334
29.
Hoover
,
W. G.
,
1985
, “
Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), p.
1695
.10.1103/PhysRevA.31.1695
30.
ASM
,
2002
,
Atlas of Stress–Strain Curves
, ed.,
ASM International
, Materials Park, OH.
31.
Faken
,
D.
, and
Jónsson
,
H.
,
1994
, “
Systematic Analysis of Local Atomic Structure Combined With 3D Computer Graphics
,”
Comput. Mater. Sci.
,
2
(
2
), pp.
279
286
.10.1016/0927-0256(94)90109-0
32.
Stukowski
,
A.
, and
Albe
,
K.
,
2010
, “
Extracting Dislocations and Non-Dislocation Crystal Defects From Atomistic Simulation Data
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
8
), p.
085001
.10.1088/0965-0393/18/8/085001
You do not currently have access to this content.