The equilibrium equations and boundary conditions in terms of the second Piola–Kirchhoff membrane stress and moment are given in this note, which are necessary for the finite deformation analysis of shells.
Issue Section:
Technical Brief
Keywords:
Elasticity
References
1.
Sanders
, J. L.
, Jr., 1961
, “Nonlinear Theories for Thin Shells
,” Q. Appl. Math.
, 21
, pp. 21
–36
.2.
Koiter
, W. T.
, 1966
, “On the Nonlinear Theory of Thin Elastic Shells. I. II. III
,” Proc. K. Ned. Akad. Wet.
, Ser. B, 69
(1
), pp. 1
–54
.3.
Niordson
, F. I.
, 1985
, Shell Theory
, Elsevier Science Publisher
, Amsterdam
.4.
Wu
, J.
, Hwang
, K.
, and Huang
, Y.
, 2008
, “An Atomistic-Based Finite-Deformation Shell Theory for Single-Wall Carbon Nanotubes
,” J. Mech. Phys. Solids
, 56
(1
), pp. 279
–292
.10.1016/j.jmps.2007.05.0085.
Wu
, J.
, Hwang
, K.
, and Huang
, Y.
, 2009
, “A Shell Theory for Carbon Nanotubes Based on the Interatomic Potential and Atomic Structure
,” Adv. Appl. Mech.
, 43
, pp. 1
–68
.10.1016/S0065-2156(09)43001-1Copyright © 2015 by ASME
You do not currently have access to this content.