A cohesive zone modeling (CZM) approach with a bilinear traction-separation relation is used to study the peeling of a thin overhanging plate from the edge of an incompressible elastomeric layer bonded firmly to a stationary rigid base. The deformations are approximated as plane strain and the materials are assumed to be linearly elastic, homogeneous, and isotropic. Furthermore, governing equations for the elastomer deformations are simplified using the lubrication theory approximations, and those of the plate with the Kirchhoff–Love theory. It is found that the peeling is governed by a single nondimensional number defined in terms of the interfacial strength, the interface fracture energy, the plate bending rigidity, the elastomer shear modulus, and the elastomeric layer thickness. An increase in this nondimensional number monotonically increases the CZ size ahead of the debond tip, and the pull-off force transitions from a fracture energy to strength dominated regime. This finding is supported by the results of the boundary value problem numerically studied using the finite element method. Results reported herein could guide elastomeric adhesive design for load capacity and may help ascertain test configurations for extracting the strength and the fracture energy of an interface from test data.

References

1.
Kaelble
,
D.
,
1959
, “
Theory and Analysis of Peel Adhesion: Mechanisms and Mechanics
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
161
180
.
2.
Kaelble
,
D.
,
1960
, “
Theory and Analysis of Peel Adhesion: Bond Stresses and Distributions
,”
Trans. Soc. Rheol.
,
4
(
1
), pp.
45
73
.
3.
Bikerman
,
J.
,
1957
, “
Theory of Peeling Through a Hookean Solid
,”
J. Appl. Phys.
,
28
(
12
), pp.
1484
1485
.
4.
Spies
,
G.
,
1953
, “
The Peeling Test on Redux-Bonded Joints: A Theoretical Analysis of the Test Devised by Aero Research Limited
,”
Aircr. Eng. Aerosp. Technol.
,
25
(
3
), pp.
64
70
.
5.
Kaelble
,
D.
,
1965
, “
Peel Adhesion: Micro‐Fracture Mechanics of Interfacial Unbonding of Polymers
,”
Trans. Soc. Rheol.
,
9
(
2
), pp.
135
163
.
6.
Dillard
,
D.
,
1989
, “
Bending of Plates on Thin Elastomeric Foundations
,”
ASME J. Appl. Mech.
,
56
(
2
), pp.
382
386
.
7.
Lefebvre
,
D. R.
,
Dillard
,
D. A.
, and
Brinson
,
H.
,
1988
, “
The Development of a Modified Double-Cantilever-Beam Specimen for Measuring the Fracture Energy of Rubber to Metal Bonds
,”
Exp. Mech.
,
28
(
1
), pp.
38
44
.
8.
Ghatak
,
A.
,
Mahadevan
,
L.
, and
Chaudhury
,
M. K.
,
2005
, “
Measuring the Work of Adhesion Between a Soft Confined Film and a Flexible Plate
,”
Langmuir
,
21
(
4
), pp.
1277
1281
.
9.
Bao
,
G.
, and
Suo
,
Z.
,
1992
, “
Remarks on Crack-Bridging Concepts
,”
ASME Appl. Mech. Rev.
,
45
(
8
), pp.
355
366
.
10.
Xu
,
X.-P.
, and
Needleman
,
A.
,
1996
, “
Numerical Simulations of Dynamic Crack Growth Along an Interface
,”
Int. J. Fract.
,
74
(
4
), pp.
289
324
.
11.
Geubelle
,
P. H.
, and
Baylor
,
J. S.
,
1998
, “
Impact-Induced Delamination of Composites: A 2D Simulation
,”
Compos. Part B: Eng.
,
29
(
5
), pp.
589
602
.
12.
Dugdale
,
D.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
13.
Tang
,
T.
, and
Hui
,
C. Y.
,
2005
, “
Decohesion of a Rigid Punch From an Elastic Layer: Transition From “Flaw Sensitive” to “Flaw Insensitive” Regime
,”
J. Polym. Sci. Part B: Polym. Phys.
,
43
(
24
), pp.
3628
3637
.
14.
Williams
,
J.
, and
Hadavinia
,
H.
,
2002
, “
Analytical Solutions for Cohesive Zone Models
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
809
825
.
15.
Georgiou
,
I.
,
Hadavinia
,
H.
,
Ivankovic
,
A.
,
Kinloch
,
A.
,
Tropsa
,
V.
, and
Williams
,
J.
,
2003
, “
Cohesive Zone Models and the Plastically Deforming Peel Test
,”
J. Adhes.
,
79
(
3
), pp.
239
265
.
16.
Blackman
,
B.
,
Hadavinia
,
H.
,
Kinloch
,
A.
, and
Williams
,
J.
,
2003
, “
The Use of a Cohesive Zone Model to Study the Fracture of Fibre Composites and Adhesively-Bonded Joints
,”
Int. J. Fract.
,
119
(
1
), pp.
25
46
.
17.
Ouyang
,
Z.
, and
Li
,
G.
,
2009
, “
Local Damage Evolution of Double Cantilever Beam Specimens During Crack Initiation Process: A Natural Boundary Condition Based Method
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051003
.
18.
Plaut
,
R. H.
, and
Ritchie
,
J. L.
,
2004
, “
Analytical Solutions for Peeling Using Beam-on-Foundation Model and Cohesive Zone
,”
J. Adhes.
,
80
(
4
), pp.
313
331
.
19.
Stigh
,
U.
,
1988
, “
Damage and Crack Growth Analysis of the Double Cantilever Beam Specimen
,”
Int. J. Fract.
,
37
(
1
), pp.
R13
R18
.
20.
Biel
,
A.
, and
Stigh
,
U.
,
2007
, “
An Analysis of the Evaluation of the Fracture Energy Using the DCB-Specimen
,”
Arch. Mech.
,
59
(
4–5
), pp.
311
327
.http://am.ippt.pan.pl/am/article/view/v59p311
21.
Dhong
,
C.
, and
Fréchette
,
J.
,
2015
, “
Coupled Effects of Applied Load and Surface Structure on the Viscous Forces During Peeling
,”
Soft Matter
,
11
(
10
), pp.
1901
1910
.
22.
Timoshenko
,
S.
,
1940
,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
23.
Ripling
,
E.
,
Mostovoy
,
S.
, and
Patrick
,
R.
,
1964
, “
Measuring Fracture Toughness of Adhesive Joints
,”
Mater. Res. Stand.
,
4
(
3
), pp.
129
134
.
24.
Maugis
,
D.
,
1992
, “
Adhesion of Spheres: the JKR-DMT Transition Using a Dugdale Model
,”
J. Colloid Interface Sci.
,
150
(
1
), pp.
243
269
.
25.
Reynolds
,
O.
,
1886
, “
On the Theory of Lubrication and Its Application to Mr. Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil
,”
Proc. R. Soc. London
,
40
(
242–245
), pp.
191
203
.
26.
Wolfram, Research,
2014
,
Mathematica
,
Wolfram Research
,
Champaign, IL
.
27.
Mukherjee
,
B.
,
Batra
,
R. C.
, and
Dillard
,
D. A.
,
2016
, “
Effect of Confinement and Interfacial Adhesion on Peeling of a Flexible Plate From an Elastomeric Layer
,”
Int. J. Solids Struct.
(in press).
28.
Obreimoff
,
J.
,
1930
, “
The Splitting Strength of Mica
,”
Proc. R. Soc. London A
,
127
(
805
), pp.
290
297
.
29.
Ha
,
K.
,
Baek
,
H.
, and
Park
,
K.
,
2015
, “
Convergence of Fracture Process Zone Size in Cohesive Zone Modeling
,”
Appl. Math. Model.
,
39
(
19
), pp.
5828
5836
.
30.
Ghatak
,
A.
,
2006
, “
Confinement-Induced Instability of Thin Elastic Film
,”
Phys. Rev. E
,
73
(
4
), p.
041601
.
31.
Ghatak
,
A.
,
Chaudhury
,
M. K.
,
Shenoy
,
V.
, and
Sharma
,
A.
,
2000
, “
Meniscus Instability in a Thin Elastic Film
,”
Phys. Rev. Lett.
,
85
(
20
), p.
4329
.
32.
Ghatak
,
A.
, and
Chaudhury
,
M. K.
,
2003
, “
Adhesion-Induced Instability Patterns in Thin Confined Elastic Film
,”
Langmuir
,
19
(
7
), pp.
2621
2631
.
33.
Li
,
S.
,
Wang
,
J.
, and
Thouless
,
M.
,
2004
, “
The Effects of Shear on Delamination in Layered Materials
,”
J. Mech. Phys. Solids
,
52
(
1
), pp.
193
214
.
34.
Ghatak
,
A.
,
Mahadevan
,
L.
,
Chung
,
J. Y.
,
Chaudhury
,
M. K.
, and
Shenoy
,
V.
,
2004
, “
Peeling From a Biomimetically Patterned Thin Elastic Film
,”
Proc. R. Soc. London Ser. A
,
460
(
2049
), pp.
2725
2735
.
You do not currently have access to this content.