The dynamic tensile response of additively manufactured (AM) dense and porous Ti6Al4V specimens was investigated under quasi-static and dynamic tension. The porous specimens contained single embedded spherical pores of different diameters. Such artificial spherical pores can mimic the behavior of realistic flaws in the material. It was found that beyond a certain pore diameter (Ø600 μm), the failure is determined according to the pore location, characterized by an abrupt failure and a significant decrease of ductility, while below that diameter, necking and fracture do not occur at the pore. The dynamic tensile mechanical behavior of the additively manufactured dense material was found to be similar to that of the conventional equivalent material, but the ductility to failure of the latter is observed to be higher.

References

1.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform
,
23
(
6
), pp. 1917–1928.
2.
Rafi
,
H. K.
,
Starr
,
T. L.
, and
Stucker
,
B. E.
,
2013
, “
A Comparison of the Tensile, Fatigue, and Fracture Behavior of Ti-6Al-4V and 15-5 PH Stainless Steel Parts Made by Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
69
(
5–8
), pp. 1299–1309.
3.
Fadida
,
R.
,
Rittel
,
D.
, and
Shirizly
,
A.
,
2015
, “
Dynamic Mechanical Behavior of Additively Manufactured Ti6Al4V With Controlled Voids
,”
ASME J. Appl. Mech.
,
82
(
4
), p.
041004
.
4.
ASTM
,
2014
, “Standard Specification for Additive Manufacturing Titanium-6 Aluminum-4 Vanadium With Powder Bed Fusion,” ASTM International, West Conshohocken, PA, Standard No.
ASTM F2924-14
.https://www.astm.org/Standards/F2924.htm
5.
SAE
,
2002
, “Titanium Alloy Laser Deposited Products 6Al-4V Annealed,” SAE International, Warrendale, PA, SAE Standard No.
AMS 4999
.http://standards.sae.org/ams4999/
6.
Aumund-Kopp
,
C.
, and
Petzoldt
,
F.
,
2016
, “Standards for Metal Additive Manufacturing: A Global Perspective,”
Metal Addit. Manuf.
,
2
(2), pp. 45–52.http://www.metal-am.com/metal-additive-manufacturing-magazine-archive/metal-additive-manufacturing-vol-2-no-2-summer-2016/
7.
Weinong
,
W.
, and
Chen
,
B. S.
,
2011
,
Split Hopkinson (Kolsky) Bar
,
Springer
, New York.
8.
Ramesh
,
K. T.
,
2008
, “
High Rates and Impact Experiments
,”
Springer Handbook of Experimental Solid Mechanics
, Springer, Boston, MA, pp.
929
960
.
9.
Voyiadjis
,
G. Z.
,
Palazotto
,
A. N.
, and
Gao
,
X.-L.
,
2002
, “
Modeling of Metallic Materials at High Strain Rates With Continuum Damage Mechanics
,”
ASME Appl. Mech. Rev.
,
55
(
5
), pp.
481
492
.
10.
Nicholas
,
T.
,
1972
, “
On the Determination of the Mechanical Properties of Materials at High Shear-Strain Rates
,”
J. Mech. Phys. Solids
,
20
(
2
), pp.
57
64
.
11.
Veiga
,
C.
,
Davim
,
J. P.
, and
Loureiro
,
A. J. R.
,
2012
, “
Properties and Applications of Titanium Alloys: A Brief Review
,”
Rev. Adv. Mater. Sci.
,
32
(
2
), pp.
133
148
.http://www.ipme.ru/e-journals/RAMS/no_23212/05_23212_veiga.pdf
12.
Wulf
,
G. L.
,
1979
, “
High Strain Rate Compression of Titanium and Some Titanium Alloys
,”
Int. J. Mech. Sci.
,
21
(
12
), pp.
713
718
.
13.
Jones
,
D. R.
,
Fensin
,
S. J.
,
Dippo
,
O.
,
Beal
,
R. A.
,
Livescu
,
V.
,
Martinez
,
D. T.
,
Trujillo
,
C. P.
,
Florando
,
J. N.
,
Kumar
,
M.
, and
Gray
,
G. T.
,
2016
, “
Spall Fracture in Additive Manufactured Ti-6Al-4V
,”
J. Appl. Phys.
,
120
(
13
), p. 135902.
14.
Matthes
,
M.
,
O'Toole
,
B.
,
Trabia
,
M.
,
Roy
,
S.
,
Jennings
,
R.
,
Bodenchak
,
E.
,
Boswell
,
M.
,
Graves
,
T.
,
Hixson
,
R.
,
Daykin
,
E.
,
Hawkins
,
C.
,
Fussell
,
Z.
,
Daykin
,
A.
, and
Heika
,
M.
,
2017
, “
Comparison of Failure Mechanisms Due to Shock Propagation in Forged, Layered, and Additive Manufactured Titanium Alloy
,”
Dynamic Behavior of Materials
, Vol.
1
,
Springer
, New York, pp.
131
138
.
15.
Ackelid
,
U.
, and
Svensson
,
M.
,
2009
, “
Additive Manufacturing of Fully Dense TI6AL4V Metal Parts by Electron Beam Melting
,”
International Conference Powder Metallurgy—Part: Material PowderMetal
(PowderMet), Las Vegas, NV, June 28–July 1, pp.
9101
9109
.
16.
Gray
, III
,
G. T.
,
Livescu
,
V.
,
Rigg
,
P. A.
,
Trujillo
,
C. P.
,
Cady
,
C. M.
,
Chen
,
S. R.
,
Carpenter
,
J. S.
,
Lienert
,
T. J.
, and
Fensin
,
S.
,
2015
, “
Structure/Property (Constitutive and Dynamic Strength/Damage) Characterization of Additively Manufactured 316 L SS
,”
EPJ Web Conf.
,
94
, p. 0
2006
.
17.
Lovinger
,
Z.
,
Rosenberg
,
Z.
, and
Rittel
,
D.
,
2015
, “
On What Controls the Spacing of Spontaneous Adiabatic Shear Bands in Collapsing Thick-Walled Cylinders
,”
EPJ Web Conf.
,
94
, p.
04054
.
18.
Biswas
,
N.
,
Ding
,
J. L.
,
Balla
,
V. K.
,
Field
,
D. P.
, and
Bandyopadhyay
,
A.
,
2012
, “
Deformation and Fracture Behavior of Laser Processed Dense and Porous Ti6Al4V Alloy Under Static and Dynamic Loading
,”
Mater. Sci. Eng. A
,
549
, pp.
213
221
.
19.
Wauthle
,
R.
,
Ahmadi
,
S. M.
,
Amin Yavari
,
S.
,
Mulier
,
M.
,
Zadpoor
,
A. A.
,
Weinans
,
H.
,
Van Humbeeck
,
J.
,
Kruth
,
J.-P.
, and
Schrooten
,
J.
,
2015
, “
Revival of Pure Titanium for Dynamically Loaded Porous Implants Using Additive Manufacturing
,”
Mater. Sci. Eng. C
,
54
, pp. 94–100.
20.
Furumoto
,
T.
,
Koizumi
,
A.
,
Alkahari
,
M. R.
,
Anayama
,
R.
,
Hosokawa
,
A.
,
Tanaka
,
R.
, and
Ueda
,
T.
,
2015
, “
Permeability and Strength of a Porous Metal Structure Fabricated by Additive Manufacturing
,”
J. Mater. Process. Technol.
,
219
, pp. 10–16.
21.
Ben Shabat
,
Y.
, and
Fischer
,
A.
,
2014
, “
Design of Adaptive Porous Micro-Structures for Additive Manufacturing
,”
Proc. CIRP
,
21
, pp.
133
137
.
22.
Gorny
,
B.
,
Niendorf
,
T.
,
Lackmann
,
J.
,
Thoene
,
M.
,
Troester
,
T.
, and
Maier
,
H. J.
,
2011
, “
In Situ Characterization of the Deformation and Failure Behavior of Non-Stochastic Porous Structures Processed by Selective Laser Melting
,”
Mater. Sci. Eng. A
,
528
(
27
), pp.
7962
7967
.
23.
Wang
,
D.
,
Yang
,
Y.
,
Liu
,
R.
,
Xiao
,
D.
, and
Sun
,
J.
,
2013
, “
Study on the Designing Rules and Processability of Porous Structure Based on Selective Laser Melting (SLM)
,”
J. Mater. Process. Technol.
,
213
(
10
), pp. 1734–1742.
24.
Taniguchi
,
N.
,
Fujibayashi
,
S.
,
Takemoto
,
M.
,
Sasaki
,
K.
,
Otsuki
,
B.
,
Nakamura
,
T.
,
Matsushita
,
T.
,
Kokubo
,
T.
, and
Matsuda
,
S.
,
2016
, “
Effect of Pore Size on Bone Ingrowth Into Porous Titanium Implants Fabricated by Additive Manufacturing: An In Vivo Experiment
,”
Mater. Sci. Eng. C
,
59
, pp.
690
701
.
25.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth—I: Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
.
26.
Benzerga
,
A. A.
, and
Leblond
,
J.-B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp. 169–305.
27.
Dongfang
,
M.
,
Danian
,
C.
,
Shanxing
,
W.
,
Huanran
,
W.
,
Canyuan
,
C.
, and
Gaotao
,
D.
,
2011
, “
A Dynamic Investigation of Observable Void Growth and Coalescence in Pure Copper Sheets
,”
J. Appl. Phys.
,
110
(
9
), p. 094905.
28.
Driemeier
,
L.
,
Moura
,
R. T.
,
Machado
,
I. F.
, and
Alves
,
M.
,
2015
, “
A Bifailure Specimen for Accessing Failure Criteria Performance
,”
Int. J. Plast.
,
71
, pp. 62–86.
29.
Weck
,
A.
, and
Wilkinson
,
D. S.
,
2008
, “
Experimental Investigation of Void Coalescence in Metallic Sheets Containing Laser Drilled Holes
,”
Acta Mater.
,
56
(
8
), pp. 1774–1784.
30.
Griffin
,
J. S.
,
Butcher
,
C. J.
, and
Chen
,
Z.
,
2014
, “
A Numerical and Experimental Investigation of Coalescence Between Cylindrical Holes
,”
Trans. Can. Soc. Mech. Eng.
,
38
(
1
), pp.
93
106
.http://www.tcsme.org/Papers/Vol38/Vol38No1Paper7.pdf
31.
da Silva
,
M. G.
, and
Ramesh
,
K. T.
,
1997
, “
The Rate-Dependent Deformation and Localization of Fully Dense and Porous Ti-6Al-4V
,”
Mater. Sci. Eng. A
,
232
(
1–2
), pp.
11
22
.
32.
Zhang
,
J.
,
Wang
,
B.
,
Lu
,
G.
, and
Zhang
,
T. G.
,
2000
, “
Dynamic Yield Stresses of Porous Materials Made of Bronze and Iron
,”
Key Eng. Mater.
,
177–180
(
Pt.1
), pp. 249–254.
33.
Lankford
, , Jr.
J.
,
, and
Dannemann
,
K. A.
,
1998
, “
Strain Rate Effects in Porous Materials
,”
MRS Online Proc. Libr.
,
521
, pp.
103
108
.
34.
Xue
,
P.
,
Iqbal
,
N.
,
Liao
,
H. J. J.
,
Wang
,
B.
, and
Li
,
Y. L. L.
,
2012
, “
Experimental Study, on Strain Rate Sensitivity of Ductile Porous Irons
,”
Int. J. Impact Eng.
,
48
, pp.
82
86
.
35.
Kolsky
,
H.
,
1949
, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. B
,
62
(
11
), p.
676
.
36.
Harding
,
J.
,
Wood
,
E. O.
, and
Campbell
,
J. D.
,
1960
, “
Tensile Testing of Materials at Impact Rates of Strain
,”
J. Mech. Eng. Sci.
,
2
(
2
), pp.
88
96
.
37.
Rotbaum
,
Y.
, and
Rittel
,
D.
,
2014
, “
Is There an Optimal Gauge Length for Dynamic Tensile Specimens?
,”
Exp. Mech.
,
54
(
7
), pp. 1205–1214.
38.
EPMA
, 2015,
Introduction to Additive Manufacturing Technology, a Guide for Designers and Engineers
,
European Powder Metallurgy Association
, Shrewsbury, UK, pp.
28
34
.
39.
Kranz
,
J.
,
Herzog
,
D.
, and
Emmelmann
,
C.
,
2015
, “
Design Guidelines for Laser Additive Manufacturing of Lightweight Structures in TiAl6V4
,”
J. Laser Appl.
,
27
(
S1
), p. S14001.
40.
Froes
,
F. H.
, and
Staff
,
A. S. M. I.
,
2015
,
Titanium: Physical Metallurgy Processing and Applications
,
ASM International
, Novelty, OH.
41.
Rittel
,
D.
,
Rotbaum
,
Y.
,
Rodríguez-Martínez
,
J. A.
,
Sory
,
D.
, and
Zaera
,
R.
,
2014
, “
Dynamic Necking of Notched Tensile Bars: An Experimental Study
,”
Exp. Mech.
,
54
(
6
), pp.
1099
1109
.
42.
Hibbitt, Karlsson and Sorensen,
1998
, “
ABAQUS/Standard User's Manual
,” Vol.
1
,
Hibbitt, Karlsson and Sorensen
,
Providence, RI
.
43.
Qian
,
M.
,
Xu
,
W.
,
Brandt
,
M.
, and
Tang
,
H. P.
,
2016
, “
Additive Manufacturing and Postprocessing of Ti-6Al-4V for Superior Mechanical Properties
,”
MRS Bull.
,
41
(
10
), pp.
775
783
.
You do not currently have access to this content.