Elastic metamaterials utilize locally resonant mechanical elements to onset band gap characteristics that are typically exploited in vibration suppression and isolation applications. The present work employs a comprehensive structural intensity analysis (SIA) to depict the structural power distribution and variations associated with band gap frequency ranges, as well as outside them along both dimensions of a two-dimensional (2D) metamaterial. Following a brief theoretical dispersion analysis, the actual mechanics of a finite metamaterial plate undergoing flexural loading and consisting of a square array of 100 cells is examined experimentally using a fabricated prototype. Scanning laser Doppler vibrometer (SLDV) tests are carried out to experimentally measure the deformations of the metamaterial in response to base excitations within a broad frequency range. In addition to confirming the attenuation and blocked propagation of elastic waves throughout the elastic medium via graphical visualizations of power flow maps, the SIA reveals interesting observations, which give additional insights into energy flow and transmission in elastic metamaterials as a result of the local resonance effects. A drastic reduction in power flow magnitudes to the bulk regions of the plate within a band gap is noticeably met with a large amplification of structural intensity around and in the neighborhood of the excitation source as a compensatory effect. Finally, the theoretical and experimentally measured streamlines of power flow are presented as an alternative tool to predict the structural power patterns and track vortices as well as confined regions of energy concentrations.

References

1.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
2.
Huang
,
H. H.
, and
Sun
,
C. T.
,
2011
, “
A Study of Band-Gap Phenomena of Two Locally Resonant Acoustic Metamaterials
,”
Proc. Inst. Mech. Eng., Part N
,
224
(3), pp. 83–92.
3.
Baravelli
,
E.
, and
Ruzzene
,
M.
,
2013
, “
Internally Resonating Lattices for Bandgap Generation and Low-Frequency Vibration Control
,”
J. Sound Vib.
,
332
(
25
), pp.
6562
6579
.
4.
Zhu
,
R.
,
Liu
,
X.
,
Hu
,
G.
,
Sun
,
C.
, and
Huang
,
G.
,
2014
, “
A Chiral Elastic Metamaterial Beam for Broadband Vibration Suppression
,”
J. Sound Vib.
,
333
(
10
), pp.
2759
2773
.
5.
Hussein
,
M. I.
, and
Frazier
,
M. J.
,
2013
, “
Metadamping: An Emergent Phenomenon in Dissipative Metamaterials
,”
J. Sound Vib.
,
332
(
20
), pp.
4767
4774
.
6.
Pai
,
P. F.
,
2010
, “
Metamaterial-Based Broadband Elastic Wave Absorber
,”
J. Intell. Mater. Syst. Struct.
,
21
(
5
), pp.
517
528
.
7.
Pai
,
P. F.
,
Peng
,
H.
, and
Jiang
,
S.
,
2014
, “
Acoustic Metamaterial Beams Based on Multi-Frequency Vibration Absorbers
,”
Int. J. Mech. Sci.
,
79
, pp.
195
205
.
8.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2014
, “
Vibration Characteristics of Metamaterial Beams With Periodic Local Resonances
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
61012
.
9.
Bigoni
,
D.
,
Guenneau
,
S.
,
Movchan
,
A. B.
, and
Brun
,
M.
,
2013
, “
Elastic Metamaterials With Inertial Locally Resonant Structures: Application to Lensing and Localization
,”
Phys. Rev. B
,
87
(
17
), p.
174303
.
10.
Krushynska
,
A.
,
Kouznetsova
,
V.
, and
Geers
,
M.
,
2014
, “
Towards Optimal Design of Locally Resonant Acoustic Metamaterials
,”
J. Mech. Phys. Solids
,
71
, pp.
179
196
.
11.
Peng
,
H.
, and
Pai
,
P. F.
,
2014
, “
Acoustic Metamaterial Plates for Elastic Wave Absorption and Structural Vibration Suppression
,”
Int. J. Mech. Sci.
,
89
, pp.
350
361
.
12.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2015
, “
Wave Propagation in Metamaterial Plates With Periodic Local Resonances
,”
J. Sound Vib.
,
341
, pp.
53
73
.
13.
Chen
,
Y.
,
Huang
,
G.
, and
Sun
,
C.
,
2014
, “
Band Gap Control in an Active Elastic Metamaterial With Negative Capacitance Piezoelectric Shunting
,”
ASME J. Vib. Acoust.
,
136
(
6
), p.
061008
.
14.
Nouh
,
M.
,
Aldraihem
,
O.
, and
Baz
,
A.
,
2016
, “
Periodic Metamaterial Plates With Smart Tunable Local Resonators
,”
J. Intell. Mater. Syst. Struct.
,
27
(
13
), pp.
1829
1845
.
15.
Gonella
,
S.
,
To
,
A. C.
, and
Liu
,
W. K.
,
2009
, “
Interplay Between Phononic Bandgaps and Piezoelectric Microstructures for Energy Harvesting
,”
J. Mech. Phys. Solids
,
57
(
3
), pp.
621
633
.
16.
Mead
,
D.
,
1970
, “
Free Wave Propagation in Periodically Supported, Infinite Beams
,”
J. Sound Vib.
,
11
(
2
), pp.
181
197
.
17.
Bloch
,
F.
,
1929
, “
Über die Quantenmechanik der Elektronen in Kristallgittern
,”
Z. Phys.
,
52
(
7–8
), pp.
555
600
.
18.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
19.
Hvatov
,
A.
, and
Sorokin
,
S.
,
2015
, “
Free Vibrations of Finite Periodic Structures in Pass- and Stop-Bands of the Counterpart Infinite Waveguides
,”
J. Sound Vib.
,
347
, pp.
200
217
.
20.
Sugino
,
C.
,
Leadenham
,
S.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2016
, “
On the Mechanism of Bandgap Formation in Locally Resonant Finite Elastic Metamaterials
,”
J. Appl. Phys.
,
120
(
13
), p.
134501
.
21.
Al Ba'ba'a
,
H.
,
Nouh
,
M.
, and
Singh
,
T.
,
2017
, “
Formation of Local Resonance Band Gaps in Finite Acoustic Metamaterials: A Closed-Form Transfer Function Model
,”
J. Sound Vib.
,
410
, pp.
429
446
.
22.
Petrone
,
G.
,
De Vendittis
,
M.
,
De Rosa
,
S.
, and
Franco
,
F.
,
2016
, “
Numerical and Experimental Investigations on Structural Intensity in Plates
,”
Compos. Struct.
,
140
, pp.
94
105
.
23.
Cho
,
D.-S.
,
Choi
,
T.-M.
,
Kim
,
J.-H.
, and
Vladimir
,
N.
,
2016
, “
Structural Intensity Analysis of Stepped Thickness Rectangular Plates Utilizing the Finite Element Method
,”
Thin-Walled Struct.
,
109
, pp.
1
12
.
24.
Tadina
,
M.
,
Ragnarsson
,
P.
,
Pluymers
,
B.
,
Donders
,
S.
,
Desmet
,
W.
, and
Boltezar
,
M.
,
2008
, “
On the Use of an FE Based Energy Flow Post-Processing Method for Vehicle Structural Dynamic Analysis
,”
International Conference on Noise and Vibration Engineering
(
ISMA
), Leuven, Belgium, Sept. 15–17, pp.
1609
1620
.https://lirias.kuleuven.be/bitstream/123456789/204468/1/08PP182.pdf
25.
Cieślik
,
J.
, and
Bochniak
,
W.
,
2014
, “
Vibration Energy Flow in Welded Connection of Plates
,”
Arch. Acoust.
,
31
(
4
), pp.
53
58
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.857.2001&rep=rep1&type=pdf
26.
Cieślik
,
J.
,
2004
, “
Vibration Energy Flow in Rectangular Plates
,”
J. Theor. Appl. Mech.
,
42
(
1
), pp.
195
212
.https://www.researchgate.net/publication/228422501_Vibration_energy_flow_in_rectangular_plates
27.
Semperlotti
,
F.
, and
Conlon
,
S. C.
,
2010
, “
Structural Damage Identification in Plates Via Nonlinear Structural Intensity Maps
,”
J. Acoust. Soc. Am.
,
127
(
2
), pp.
EL48
EL53
.
28.
Lamberti
,
A.
, and
Semperlotti
,
F.
,
2013
, “
Detecting Closing Delaminations in Laminated Composite Plates Using Nonlinear Structural Intensity and Time Reversal Mirrors
,”
Smart Mater. Struct.
,
22
(
12
), p.
125006
.
29.
Al Ba'ba'a
,
H.
, and
Nouh
,
M.
,
2017
, “
Mechanics of Longitudinal and Flexural Locally Resonant Elastic Metamaterials Using a Structural Power Flow Approach
,”
Int. J. Mech. Sci.
,
122
, pp.
341
354
.
30.
Al Ba'ba'a
,
H.
, and
Nouh
,
M.
,
2017
, “
An Investigation of Vibrational Power Flow in One-Dimensional Dissipative Phononic Structures
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021003
.
31.
Wang
,
Y.-F.
, and
Wang
,
Y.-S.
,
2013
, “
Complete Bandgap in Three-Dimensional Holey Phononic Crystals With Resonators
,”
ASME J. Vib. Acoust.
,
135
(
4
), p.
041009
.
32.
Veres
,
I. A.
,
Berer
,
T.
, and
Matsuda
,
O.
,
2013
, “
Complex Band Structures of Two Dimensional Phononic Crystals: Analysis by the Finite Element Method
,”
J. Appl. Phys.
,
114
(
8
), p.
083519
.
33.
Gavrić
,
L.
, and
Pavić
,
G.
,
1993
, “
A Finite Element Method for Computation of Structural Intensity by the Normal Mode Approach
,”
J. Sound Vib.
,
164
(
1
), pp.
29
43
.
34.
Li
,
Y.
, and
Lai
,
J.
,
2000
, “
Prediction of Surface Mobility of a Finite Plate With Uniform Force Excitation by Structural Intensity
,”
Appl. Acoust.
,
60
(
3
), pp.
371
383
.
35.
Xu
,
X.
,
Lee
,
H. P.
,
Lu
,
C.
, and
Guo
,
J. Y.
,
2005
, “Streamline Representation for Structural Intensity Fields,”
J. Sound Vib.
,
280
(
1–2
), pp.
449
454
.
You do not currently have access to this content.