Abstract

In this paper, we study low-velocity multiple impacts of chains of balls and cylinders. We use three types of materials including steel, wood, and rubber. We perform collision experiments of balls and cylinders of three-, four-, and five-body chains and obtain their corresponding pre- and post-impact velocities. Although the common solution methods such as rigid body and bimodal models can not deal with this type of problems, we use a discretization method presented in Alluhydan et al. (2019, “On Planar Impacts of Cylinders and Balls,” ASME J. Appl. Mech., 86(7), p. 0710091) to accurately calculate the post-impact velocities of the colliding bodies in the chain. We use the bimodal Hertz–Crook contact force model and employ the ball-ball coefficient of restitution at the contacting segments to analyze the impact dynamics of the colliding objects. A segmentation method is used for ball-cylinder and cylinder-cylinder Collisions. The number of segments for each collision is determined by using a relationship that relates the stiffness ratio of two objects to the number of the segments. In ball-ball collisions, however, we do not use the segmentation method. The outcomes demonstrate that the overall average percentage error of post-impact velocities among experimental results and numerical predictions was less than 6.2% for all results.

References

1.
Flores
,
P
,
Ambrosio
,
J
,
Pimenta
,
J. C.
Claro
, and
Lankarani
,
H. M.
,
2008
,
Kinematics and Dynamics of Multibody Systems With Imperfect Joints: Models and Case Studies
, Vol.
34
,
Springer Science & Business Media, Cham
.
2.
Nikravesh
,
P. E.
,
1988
,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall Englewood Cliffs
,
NJ
.
3.
Nikravish
,
P.
,
2007
,
Planar Multibody Dynamics: Formulation, Programming and Applications
, 1st ed.,
CRC Press
,
Boca Raton, FL
.
4.
Hurmuzlu
,
Y.
,
1993
, “
Dynamics of Bipedal Gait: Part I Objective Functions and the Contact Event of a Planar Five-Link Biped
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
331
336
. 10.1115/1.2900797
5.
Hurmuzlu
,
Y.
,
1993
, “
Dynamics of Bipedal Gait: Part II Stability Analysis of a Planar Five-Link Biped
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
337
343
. 10.1115/1.2900798
6.
Verscheure
,
D.
,
Sharf
,
I.
,
Bruyninckx
,
H.
,
Swevers
,
J.
, and
De Schutter
,
J.
,
2010
, “
Identification of Contact Parameters From Stiff Multi-Point Contact Robotic Operations
,”
Int. J. Rob. Res.
,
29
(
4
), pp.
367
385
. 10.1177/0278364909336805
7.
Razzaghi
,
P.
,
Al Khatib
,
E.
, and
Hurmuzlu
,
Y.
,
2019
, “
Nonlinear Dynamics and Control of An Inertially Actuated Jumper Robot
,”
Nonlinear Dyn.
,
97
(
1
), pp.
1
16
. 10.1007/s11071-019-04963-1
8.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Study of the Friction-Induced Vibration and Contact Mechanics of Artificial Hip Joints
,”
Tribol. Int.
,
70
, pp.
1
10
. 10.1016/j.triboint.2013.09.006
9.
Shabana
,
A. A.
,
Zaazaa
,
K. E.
,
Escalona
,
J. L.
, and
Sany
,
J. R.
,
2004
, “
Development of Elastic Force Model for Wheel/rail Contact Problems
,”
J. Sound. Vib.
,
269
(
1-2
), pp.
295
325
. 10.1016/S0022-460X(03)00074-9
10.
Ceanga
,
V.
, and
Hurmuzlu
,
Y.
,
2001
, “
A New Look At An Old Problem: Newton’s Cradle
,”
ASME J. Appl. Mech.
,
68
(
4
), p.
575
. 10.1115/1.1344902
11.
Marghitu
,
D. B.
, and
Hurmuzlu
,
Y.
,
1995
, “
Three-Dimensional Rigid-Body Collisions With Multiple Contact Points
,”
ASME J. Appl. Mech.
,
62
(
3
), pp.
725
732
. 10.1115/1.2897006
12.
Han
,
Inhwan
, and
Gilmore
,
B.
,
1993
, “
Multi-Body Impact Motion With Friction Analysis, Simulation, and Experimental Validation
,”
ASME J. Mech. Des.
,
115
(
3
), pp.
412
422
. 10.1115/1.2919206
13.
Brogliato
,
B.
,
1999
,
Nonsmooth Mechanics: Models, Dynamics and Control
, 2nd ed.,
Springer
,
London
.
14.
Ermolin
,
E.
, and
Kazakov
,
A.
,
2005
, “
Impulse-Based Approach for Rigid Body Collisions Simultaneous Resolution
,”
International Conference Graphicon
,
Novosibirsk Akademgorodok, Russia
.
15.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2008
, “
Frictionless Multiple Impacts in Multibody Systems. I. Theoretical Framework
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
464
(
2100
), pp.
3193
3211
. 10.1098/rspa.2008.0078
16.
Liu
,
C.
,
Zhao
,
Z.
, and
Brogliato
,
B.
,
2008
, “
Frictionless Multiple Impacts in Multibody Systems. Ii. Numerical Algorithm and Simulation Results
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
465
(
2101
), pp.
1
23
. 10.1098/rspa.2008.0079
17.
Stronge
,
W. J.
,
2003
, “
Chain Reaction From Impact on Aggregate of Elasto-Plastic Rigid Bodies
,”
Int. J. Impact Eng.
,
28
(
3
), pp.
291
302
. 10.1016/S0734-743X(02)00033-7
18.
Rodriguez
,
A.
, and
Bowling
,
A.
,
2015
, “
Study of Newtons Cradle Using a New Discrete Approach
,”
Multibody Syst. Dyn.
,
33
(
1
), pp.
61
92
. 10.1007/s11044-013-9406-3
19.
Hurmuzlu
,
Y.
,
1998
, “
An Energy-Based Coefficient of Restitution for Planar Impacts of Slender Bars With Massive External Surfaces
,”
ASME J. Appl. Mech.
,
65
(
4
), pp.
952
962
. 10.1115/1.2791939
20.
Stoianovici
,
D.
, and
Hurmuzlu
,
Y.
,
1996
, “
A Critical Study of the Applicability of Rigid-Body Collision Theory
,”
ASME J. Appl. Mech.
,
63
(
2
), pp.
307
316
. 10.1115/1.2788865
21.
Belyaev
,
A. K.
,
Ma
,
C.-C.
,
Morozov
,
N. F.
,
Tovstik
,
P. E.
,
Tovstik
,
T. P.
, and
Shurpatov
,
A. O.
,
2017
, “
Dynamics of a Rod Undergoing a Longitudinal Impact by a Body
,”
Vestnik St. Petersburg University: Mathematics
,
50
(
3
), pp.
310
317
. 10.3103/S1063454117030050
22.
Wang
,
S.
,
Wang
,
Y.
,
Huang
,
Z.
, and
Yu
,
T. X.
,
2015
, “
Dynamic Behavior of Elastic Bars and Beams Impinging on Ideal Springs
,”
ASME J. Appl. Mech.
,
83
(
3
), p.
31002
. 10.1115/1.4032048
23.
Alluhydan
,
K.
,
Razzaghi
,
P.
, and
Hurmuzlu
,
Y.
,
2019
, “
On Planar Impacts of Cylinders and Balls
,”
ASME J. Appl. Mech.
,
86
(
7
), p.
071009
. 10.1115/1.4043143
You do not currently have access to this content.