Abstract

The “island-bridge” mesh structure is widely adopted for flexible epidermal electronics to simultaneously achieve the electronic functions and mechanical flexibility. Mechanical intuition tells that the small size of the “island” is beneficial to the flexibility of the structure and the adaptability to complex geometric targets. Here, a plane-strain model and an axisymmetric model are established for square “island” and cycle “island,” respectively, to analyze the mechanical system consisting of the flexible epidermal electronics and the human skin. It is found that the pressure between the “island” and the human skin is positive at the inner region and reaches a peak value at the center, while is negative at the outer region and approaches infinite at the boundary of the contact region. With the increase in the size a/R0, the amplitude of the pressure significantly increases, as well as the singular degree of the pressure at the boundary. The reduction of the “island” size is beneficial for the optimization of the “comfort level” of the flexible epidermal electronics. The models degenerate into the famous Johnson-Kendall-Roberts (JKR) model for the limit case with extremely hard and thick “island.”

References

1.
Kim
,
D. H.
,
Lu
,
N. S.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S. D.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T. I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L. Z.
,
Li
,
M.
,
Chung
,
H. J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y. W.
,
Omenetto
,
F. G.
,
Huang
,
Y. G.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
. 10.1126/science.1206157
2.
Jayathilaka
,
W.
,
Qi
,
K.
,
Qin
,
Y. L.
,
Chinnappan
,
A.
,
Serrano-Garcia
,
W.
,
Baskar
,
C.
,
Wang
,
H. B.
,
He
,
J. X.
,
Cui
,
S. Z.
,
Thomas
,
S. W.
, and
Ramakrishna
,
S.
,
2019
, “
Significance of Nanomaterials in Wearables: A Review on Wearable Actuators and Sensors
,”
Adv. Mater.
,
31
(
7
), p.
1805921
. 10.1002/adma.201805921
3.
Yokota
,
T.
,
Zalar
,
P.
,
Kaltenbrunner
,
M.
,
Jinno
,
H.
,
Matsuhisa
,
N.
,
Kitanosako
,
H.
,
Tachibana
,
Y.
,
Yukita
,
W.
,
Koizumi
,
M.
, and
Someya
,
T.
,
2016
, “
Ultraflexible Organic Photonic Skin
,”
Sci. Adv.
,
2
(
4
), p.
e1501856
. 10.1126/sciadv.1501856
4.
Das
,
P. S.
,
Park
,
S. H.
,
Baik
,
K. Y.
,
Lee
,
J. W.
, and
Park
,
J. Y.
,
2020
, “
Thermally Reduced Graphene Oxide-Nylon Membrane Based Epidermal Sensor Using Vacuum Filtration for Wearable Electrophysiological Signals and Human Motion Monitoring
,”
Carbon
,
158
(
1
), pp.
386
393
. 10.1016/j.carbon.2019.11.001
5.
Reeder
,
J. T.
,
Choi
,
J.
,
Xue
,
Y. G.
,
Gutruf
,
P.
,
Hanson
,
J.
,
Liu
,
M.
,
Ray
,
T.
,
Bandodkar
,
A. J.
,
Avila
,
R.
,
Xia
,
W.
,
Krishnan
,
S.
,
Xu
,
S.
,
Barnes
,
K.
,
Pahnke
,
M.
,
Ghaffari
,
R.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2019
, “
Waterproof, Electronics-Enabled, Epidermal Microfluidic Devices for Sweat Collection, Biomarker Analysis, and Thermography in Aquatic Settings
,”
Sci. Adv.
,
5
(
1
), p.
eaau6356
. 10.1126/sciadv.aau6356
6.
Xu
,
S.
,
Zhang
,
Y. H.
,
Jia
,
L.
,
Mathewson
,
K. E.
,
Jang
,
K. I.
,
Kim
,
J.
,
Fu
,
H. R.
,
Huang
,
X.
,
Chava
,
P.
,
Wang
,
R. H.
,
Bhole
,
S.
,
Wang
,
L. Z.
,
Na
,
Y. J.
,
Guan
,
Y.
,
Flavin
,
M.
,
Han
,
Z. S.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2014
, “
Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin
,”
Science
,
344
(
6179
), pp.
70
74
. 10.1126/science.1250169
7.
Imani
,
S.
,
Bandodkar
,
A. J.
,
Mohan
,
A. M. V.
,
Kumar
,
R.
,
Yu
,
S. F.
,
Wang
,
J.
, and
Mercier
,
P. P.
,
2016
, “
A Wearable Chemical-Electrophysiological Hybrid Biosensing System for Real-Time Health and Fitness Monitoring
,”
Nat. Commun.
,
7
(
1
), p.
11650
. 10.1038/ncomms11650
8.
Jeong
,
J. W.
,
Yeo
,
W. H.
,
Akhtar
,
A.
,
Norton
,
J. J. S.
,
Kwack
,
Y. J.
,
Li
,
S.
,
Jung
,
S. Y.
,
Su
,
Y. W.
,
Lee
,
W.
,
Xia
,
J.
,
Cheng
,
H. Y.
,
Huang
,
Y. G.
,
Choi
,
W. S.
,
Bretl
,
T.
, and
Rogers
,
J. A.
,
2013
, “
Materials and Optimized Designs for Human-Machine Interfaces via Epidermal Electronics
,”
Adv. Mater.
,
25
(
47
), pp.
6839
6846
. 10.1002/adma.201301921
9.
Liu
,
Y. H.
,
Norton
,
J. J. S.
,
Qazi
,
R.
,
Zou
,
Z. N.
,
Ammann
,
K. R.
,
Liu
,
H.
,
Yan
,
L. Q.
,
Tran
,
P. L.
,
Jang
,
K. I.
,
Lee
,
J. W.
,
Zhang
,
D.
,
Kilian
,
K. A.
,
Jung
,
S. H.
,
Bretl
,
T.
,
Xiao
,
J. L.
,
Slepian
,
M. J.
,
Huang
,
Y. G.
,
Jeong
,
J. W.
, and
Rogers
,
J. A.
,
2016
, “
Epidermal Mechano-Acoustic Sensing Electronics for Cardiovascular Diagnostics and Human-Machine Interfaces
,”
Sci. Adv.
,
2
(
11
), p.
e1601185
. 10.1126/sciadv.1601185
10.
Hua
,
Q. L.
,
Sun
,
J. L.
,
Liu
,
H. T.
,
Bao
,
R. R.
,
Yu
,
R. M.
,
Zhai
,
J. Y.
,
Pan
,
C. F.
, and
Wang
,
Z. L.
,
2018
, “
Skin-Inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing
,”
Nat. Commun.
,
9
(
1
), p.
244
. 10.1038/s41467-017-02685-9
11.
Lai
,
Y. C.
,
Wu
,
H. M.
,
Lin
,
H. C.
,
Chang
,
C. L.
,
Chou
,
H. H.
,
Hsiao
,
Y. C.
, and
Wu
,
Y. C.
,
2019
, “
Entirely, Intrinsically, and Autonomously Self-Healable, Highly Transparent, and Superstretchable Triboelectric Nanogenerator for Personal Power Sources and Self-Powered Electronic Skins
,”
Adv. Funct. Mater.
,
29
(
40
), p.
1904626
. 10.1002/adfm.201904626
12.
Song
,
Y.
,
Chen
,
H. T.
,
Su
,
Z. M.
,
Chen
,
X. X.
,
Miao
,
L. M.
,
Zhang
,
J. X.
,
Cheng
,
X. L.
, and
Zhang
,
H. X.
,
2017
, “
Highly Compressible Integrated Supercapacitor-Piezoresistance-Sensor System With CNT-PDMS Sponge for Health Monitoring
,”
Small
,
13
(
39
), p.
1702091
. 10.1002/smll.201702091
13.
Ryu
,
S.
,
Lee
,
P.
,
Chou
,
J. B.
,
Xu
,
R. Z.
,
Zhao
,
R.
,
Hart
,
A. J.
, and
Kim
,
S. G.
,
2015
, “
Extremely Elastic Wearable Carbon Nanotube Fiber Strain Sensor for Monitoring of Human Motion
,”
ACS Nano
,
9
(
6
), pp.
5929
5936
. 10.1021/acsnano.5b00599
14.
Lipomi
,
D. J.
,
Vosgueritchian
,
M.
,
Tee
,
B. C.
,
Hellstrom
,
S. L.
,
Lee
,
J. A.
,
Fox
,
C. H.
, and
Bao
,
Z. J. N. n.
,
2011
, “
Skin-Like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes
,”
Nat. Nanotechnol.
,
6
(
12
), pp.
788
792
. 10.1038/nnano.2011.184
15.
Hou
,
C.
,
Xu
,
Z. J.
,
Qiu
,
W.
,
Wu
,
R. H.
,
Wang
,
Y. N.
,
Xu
,
Q. C.
,
Liu
,
X. Y.
, and
Guo
,
W. X.
,
2019
, “
A Biodegradable and Stretchable Protein-Based Sensor as Artificial Electronic Skin for Human Motion Detection
,”
Small
,
15
(
11
), p.
1805084
. 10.1002/smll.201805084
16.
Jeong
,
H.
,
Wang
,
L.
,
Ha
,
T.
,
Mitbander
,
R.
,
Yang
,
X. X.
,
Dai
,
Z. H.
,
Qiao
,
S. T.
,
Shen
,
L. X.
,
Sun
,
N.
, and
Lu
,
N. S.
,
2019
, “
Modular and Reconfigurable Wireless E-Tattoos for Personalized Sensing
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900117
. 10.1002/admt.201900117
17.
Son
,
D.
,
Lee
,
J.
,
Qiao
,
S.
,
Ghaffari
,
R.
,
Kim
,
J.
,
Lee
,
J. E.
,
Song
,
C.
,
Kim
,
S. J.
,
Lee
,
D. J.
,
Jun
,
S. W.
,
Yang
,
S.
,
Park
,
M.
,
Shin
,
J.
,
Do
,
K.
,
Lee
,
M.
,
Kang
,
K.
,
Hwang
,
C. S.
,
Lu
,
N.
,
Hyeon
,
T.
, and
Kim
,
D.-H.
,
2014
, “
Multifunctional Wearable Devices for Diagnosis and Therapy of Movement Disorders
,”
Nat. Nanotechnol.
,
9
(
5
), pp.
397
404
. 10.1038/nnano.2014.38
18.
Ko
,
H. C.
,
Stoykovich
,
M. P.
,
Song
,
J.
,
Malyarchuk
,
V.
,
Choi
,
W. M.
,
Yu
,
C.-J.
,
Geddes Iii
,
J. B.
,
Xiao
,
J.
,
Wang
,
S.
, and
Huang
,
Y. J. N.
,
2008
, “
A Hemispherical Electronic eye Camera Based on Compressible Silicon Optoelectronics
,”
Nature
,
454
(
7205
), pp.
748
753
. 10.1038/nature07113
19.
Li
,
R.
,
Li
,
M.
,
Su
,
Y.
,
Song
,
J.
, and
Ni
,
X.
,
2013
, “
An Analytical Mechanics Model for the Island-Bridge Structure of Stretchable Electronics
,”
Soft Matter
,
9
(
35
), pp.
8476
8482
. 10.1039/c3sm51476e
20.
Wang
,
S. D.
,
Li
,
M.
,
Wu
,
J.
,
Kim
,
D. H.
,
Lu
,
N. S.
,
Su
,
Y. W.
,
Kang
,
Z.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2012
, “
Mechanics of Epidermal Electronics
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031022
. 10.1115/1.4005963
21.
Cheng
,
H.
, and
Wang
,
S.
,
2014
, “
Mechanics of Interfacial Delamination in Epidermal Electronics Systems
,”
ASME J. Appl. Mech.
,
81
(
4
), p.
044501
. 10.1115/1.4025305
22.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
London
.
23.
Sun
,
J.-Y.
,
Lu
,
N.
,
Yoon
,
J.
,
Oh
,
K.-H.
,
Suo
,
Z.
, and
Vlassak
,
J. J.
,
2011
, “
Inorganic Islands on a Highly Stretchable Polyimide Substrate
,”
J. Mater. Res.
,
24
(
11
), pp.
3338
3342
. 10.1557/jmr.2009.0417
24.
Cho
,
M. J.
,
Kane
,
A. A.
,
Seaward
,
J. R.
, and
Hallac
,
R. R.
,
2016
, “
Metopic “Ridge” vs. “Craniosynostosis": Quantifying Severity With 3D Curvature Analysis
,”
J. Cranio. Maxill. Surg.
,
44
(
9
), pp.
1259-
1265
. 10.1016/j.jcms.2016.06.019
You do not currently have access to this content.