Abstract

We propose here an asymptotic solution defining the optimal compliance distribution for a fibrillar adhesive to obtain maximum theoretical strength. This condition corresponds to that of equal load sharing (ELS) among fibrils, i.e., all the fibrils are carrying the same load at detachment; hence, they all detach simultaneously. We model the array of fibrils as a continuum of linear elastic material that cannot laterally transmit load (analogous to a Winkler soil). Ultimately, we obtain the continuum distribution of fibril's compliance in the closed-form solution and compare it with previously obtained data for a discrete model for fibrillar adhesives. The results show improving accuracy for an incremental number of fibrils and smaller center-to-center spacing. Surprisingly, the approximation introduced by the asymptotic model shows reduced sensitivity of the adhesive strength with respect to misalignment and improved adhesive strength for large misalignment angles.

References

1.
Gorb
,
S.
,
2001
,
Attachment Devices of Insect Cuticle
,
Springer Science & Business Media
,
New York
.
2.
Autumn
,
K.
,
2006
, “Properties, Principles, and Parameters of the Gecko Adhesive System,”
Biological Adhesives
,
A.
Smith
, and
J.
Callow
, eds.,
Springer
,
Berlin Heidelberg
, pp.
225
256
.
3.
Gorb
,
S. N.
, and
Varenberg
,
M.
,
2007
, “
Mushroom-Shaped Geometry of Contact Elements in Biological Adhesive Systems
,”
J. Adhes. Sci. Technol.
,
21
(
12–13
), pp.
1175
1183
. 10.1163/156856107782328317
4.
Yao
,
H.
, and
Gao
,
H.
,
2006
, “
Mechanics of Robust and Releasable Adhesion in Biology: Bottom–Up Designed Hierarchical Structures of Gecko
,”
J. Mech. Phys. Solids
,
54
(
6
), pp.
1120
1146
. 10.1016/j.jmps.2006.01.002
5.
Autumn
,
K.
,
Liang
,
Y. A.
,
Hsieh
,
S. T.
,
Zesch
,
W.
,
Chan
,
W. P.
,
Kenny
,
W. T.
,
Fearing
,
R.
, and
Full
,
R. J.
,
2000
, “
Adhesive Force of a Single Gecko Foot-Hair
,”
Nature
,
405
(
6787
), pp.
681
685
. 10.1038/35015073
6.
Autumn
,
K.
, and
Peattie
,
A. M.
,
2002
, “
Mechanisms of Adhesion in Geckos
,”
Integr. Comp. Biol.
,
42
(
6
), pp.
1081
1090
. 10.1093/icb/42.6.1081
7.
Autumn
,
K.
,
Sitti
,
M.
,
Liang
,
Y. A.
,
Peattie
,
A. M.
,
Hansen
,
W. R.
,
Sponberg
,
S.
,
Kenny
,
T. W.
,
Fearing
,
R.
,
Israelachvili
,
J. N.
, and
Full
,
R. J.
,
2002
, “
Evidence for van der Waals Adhesion in Gecko Setae
,”
Proc. Natl. Acad. Sci. USA
,
99
(
19
), pp.
12252
12256
. 10.1073/pnas.192252799
8.
Arzt
,
E.
,
Gorb
,
S.
, and
Spolenak
,
R.
,
2003
, “
From Micro to Nano Contacts in Biological Attachment Devices
,”
Proc. Natl. Acad. Sci. USA
,
100
(
19
), pp.
10603
10606
. 10.1073/pnas.1534701100
9.
Gao
,
H.
, and
Yao
,
H.
,
2004
, “
Shape Insensitive Optimal Adhesion of Nanoscale Fibrillar Structures
,”
Proc. Natl. Acad. Sci. USA
,
101
(
21
), pp.
7851
7856
. 10.1073/pnas.0400757101
10.
Gao
,
H.
,
Wang
,
X.
,
Yao
,
H.
,
Gorb
,
S.
, and
Arzt
,
E.
,
2005
, “
Mechanics of Hierarchical Adhesion Structures of Geckos
,”
Mech. Mater.
,
37
(
2–3
), pp.
275
285
. 10.1016/j.mechmat.2004.03.008
11.
Peisker
,
H.
,
Michels
,
J.
, and
Gorb
,
S. N.
,
2013
, “
Evidence for a Material Gradient in the Adhesive Tarsal Setae of the Ladybird Beetle Coccinella Septempunctata
,”
Nat. Commun.
,
4
(
1
), p.
1661
. 10.1038/ncomms2576
12.
Gorb
,
S. N.
, and
Filippov
,
A. E.
,
2014
, “
Fibrillar Adhesion With No Clusterisation: Functional Significance of Material Gradient Along Adhesive Setae of Insects
,”
Beilstein J. Nanotechnol.
,
5
, pp.
837
845
. 10.3762/bjnano.5.95
13.
Booth
,
J. A.
,
Bacca
,
M.
,
McMeeking
,
R. M.
, and
Foster
,
K. L.
,
2018
, “
Benefit of Backing-Layer Compliance in Fibrillar Adhesive Patches-Resistance to Peel Propagation in the Presence of Interfacial Misalignment
,”
Adv. Mater. Interfaces
,
5
(
15
), p.
1800272
. 10.1002/admi.201800272
14.
Spolenak
,
R.
,
Gorb
,
S. N.
, and
Arzt
,
E.
,
2005
, “
Adhesion Design Maps for Bio-Inspired Attachment Systems
,”
Acta Biomater.
,
1
(
1
), pp.
5
13
. 10.1016/j.actbio.2004.08.004
15.
Yao
,
H.
, and
Gao
,
H.
,
2010
, “
Gibson-Soil-Like Materials Achieve Flaw-Tolerant Adhesion
,”
J. Comput. Theor. Nanosci.
,
7
(
7
), pp.
1299
1305
. 10.1166/jctn.2010.1484
16.
Gao
,
Y.
, and
Yao
,
H.
,
2019
, “
Homogenizing Interfacial Shear Stress via Thickness Gradient
,”
J. Mech. Phys. Solids
,
131
, pp.
112
124
. 10.1016/j.jmps.2019.06.017
17.
Bacca
,
M.
,
Booth
,
J. A.
,
Turner
,
K. L.
, and
McMeeking
,
R. M.
,
2016
, “
Load Sharing in Bioinspired Fibrillar Adhesives With Backing Layer Interactions and Interfacial Misalignment
,”
J. Mech. Phys. Solids
,
96
, pp.
428
444
. 10.1016/j.jmps.2016.04.008
18.
Kumar
,
S.
,
Wardle
,
B. L.
,
Arif
,
M. F.
, and
Ubaid
,
J.
,
2018
, “
Stress Reduction of 3D Printed Compliance-Tailored Multilayers
,”
Adv. Eng. Mater.
,
20
(
1
), p.
1700883
. 10.1002/adem.201700883
19.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
New York
.
You do not currently have access to this content.