Abstract

Fatigue resistance is crucial for the engineering application of metals. Polycrystalline metals with highly oriented nanotwins have been shown to exhibit a history-independent, stable, and symmetric cyclic response [Pan et al., 2017, Nature 551, pp. 214-217]. However, a constitutive model that incorporates the cyclic deformation mechanism of highly oriented nanotwinned metals is currently lacking. This study aims to develop a physically based model to describe the plastic deformation of highly oriented nanotwinned metals under cyclic loading parallel to the twin boundaries. The theoretical analysis is conducted based on non-uniform distribution of twin boundary spacing measured by experiments. During cyclic plasticity, each twin lamella is discretely regarded as a perfect elastoplastic element with a yielding strength depending on its thickness. The interaction between adjacent nanotwins is not taken into consideration according to the cyclic plasticity mechanism of highly oriented nanotwins. The modeling results are well consistent with the experiments, including the loading-history independence, Masing behavior, and back stress evolution. Moreover, the dissipation energy during cyclic deformation can be evaluated from a thermodynamics perspective, which offers an approach for the prediction of the fatigue life of highly oriented nanotwins. The cyclic plasticity modeling and fatigue life prediction are unified without additional fatigue damage parameters. Overall, our work lays down a physics-informed framework that is critical for the precise prediction of the unique cyclic behaviors of highly oriented nanotwins.

References

1.
Lu
,
L.
,
Shen
,
Y.
,
Chen
,
X.
,
Qian
,
L.
, and
Lu
,
K.
,
2004
, “
Ultrahigh Strength and High Electrical Conductivity in Copper
,”
Science
,
304
(
5669
), pp.
422
426
. 10.1126/science.1092905
2.
Wei
,
Y.
,
Li
,
Y.
,
Zhu
,
L.
,
Liu
,
Y.
,
Lei
,
X.
,
Wang
,
G.
,
Wu
,
Y.
,
Mi
,
Z.
,
Liu
,
J.
, and
Wang
,
H.
,
2014
, “
Evading the Strength–Ductility Trade-Off Dilemma in Steel Through Gradient Hierarchical Nanotwins
,”
Nat. Commun.
,
5
, pp.
1
8
.
3.
Cheng
,
Z.
,
Zhou
,
H.
,
Lu
,
Q.
,
Gao
,
H.
, and
Lu
,
L.
,
2018
, “
Extra Strengthening and Work Hardening in Gradient Nanotwinned Metals
,”
Science
,
362
(
6414
), p.
eaau1925
. 10.1126/science.aau1925
4.
Shen
,
Y.
,
Lu
,
L.
,
Lu
,
Q.
,
Jin
,
Z.
, and
Lu
,
K.
,
2005
, “
Tensile Properties of Copper With Nano-scale Twins
,”
Scr. Mater.
,
52
(
10
), pp.
989
994
. 10.1016/j.scriptamat.2005.01.033
5.
Qu
,
S.
,
Zhang
,
P.
,
Wu
,
S.
,
Zang
,
Q.
, and
Zhang
,
Z.
,
2008
, “
Twin Boundaries: Strong or Weak?
,”
Scr. Mater.
,
59
(
10
), pp.
1131
1134
. 10.1016/j.scriptamat.2008.07.037
6.
Kim
,
S.
,
Li
,
X.
,
Gao
,
H.
, and
Kumar
,
S.
,
2012
, “
In Situ Observations of Crack Arrest and Bridging by Nanoscale Twins in Copper Thin Films
,”
Acta Mater.
,
60
(
6–7
), pp.
2959
2972
. 10.1016/j.actamat.2012.02.002
7.
You
,
Z.
,
Lu
,
L.
, and
Lu
,
K.
,
2011
, “
Tensile Behavior of Columnar Grained Cu With Preferentially Oriented Nanoscale Twins
,”
Acta Mater.
,
59
(
18
), pp.
6927
6937
. 10.1016/j.actamat.2011.07.044
8.
Lu
,
L.
,
Chen
,
X.
,
Huang
,
X.
, and
Lu
,
K.
,
2009
, “
Revealing the Maximum Strength in Nanotwinned Copper
,”
Science
,
323
(
5914
), pp.
607
610
. 10.1126/science.1167641
9.
Wei
,
Y.
,
2011
, “
The Kinetics and Energetics of Dislocation Mediated de-Twinning in Nano-twinned Face-Centered Cubic Metals
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1558
1566
. 10.1016/j.msea.2010.10.072
10.
Zhang
,
Y.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2011
, “
Effects of Stacking Fault Energy, Strain Rate and Temperature on Microstructure and Strength of Nanostructured Cu–Al Alloys Subjected to Plastic Deformation
,”
Acta Mater.
,
59
(
15
), pp.
6048
6058
. 10.1016/j.actamat.2011.06.013
11.
Wang
,
J.
,
Li
,
N.
,
Anderoglu
,
O.
,
Zhang
,
X.
,
Misra
,
A.
,
Huang
,
J. Y.
, and
Hirth
,
J. P.
,
2010
, “
Detwinning Mechanisms for Growth Twins in Face-Centered Cubic Metals
,”
Acta Mater.
,
58
(
6
), pp.
2262
2270
. 10.1016/j.actamat.2009.12.013
12.
Bufford
,
D. C.
,
Wang
,
Y. M.
,
Liu
,
Y.
, and
Lu
,
L.
,
2016
, “
Synthesis and Microstructure of Electrodeposited and Sputtered Nanotwinned Face-Centered-Cubic Metals
,”
MRS Bulletin
,
41
(
4
), pp.
286
291
. 10.1557/mrs.2016.62
13.
Yan
,
F. K.
,
Liu
,
G. Z.
,
Tao
,
N. R.
, and
Lu
,
K.
,
2012
, “
Strength and Ductility of 316L Austenitic Stainless Steel Strengthened by Nano-scale Twin Bundles
,”
Acta Mater.
,
60
(
3
), pp.
1059
1071
. 10.1016/j.actamat.2011.11.009
14.
Yan
,
F. K.
,
Tao
,
N. R.
,
Archie
,
F.
,
Gutierrez-Urrutia
,
I.
,
Raabe
,
D.
, and
Lu
,
K.
,
2014
, “
Deformation Mechanisms in an Austenitic Single-Phase Duplex Microstructured Steel With Nanotwinned Grains
,”
Acta Mater.
,
81
, pp.
487
500
. 10.1016/j.actamat.2014.08.054
15.
Ardeljan
,
M.
,
Savage
,
D. J.
,
Kumar
,
A.
,
Beyerlein
,
I. J.
, and
Knezevic
,
M.
,
2016
, “
The Plasticity of Highly Oriented Nano-layered Zr/Nb Composites
,”
Acta Mater.
,
115
, pp.
189
203
. 10.1016/j.actamat.2016.05.058
16.
Lu
,
Q.
,
You
,
Z.
,
Huang
,
X.
,
Hansen
,
N.
, and
Lu
,
L.
,
2017
, “
Dependence of Dislocation Structure on Orientation and Slip Systems in Highly Oriented Nanotwinned Cu
,”
Acta Mater.
,
127
, pp.
85
97
. 10.1016/j.actamat.2017.01.016
17.
You
,
Z.
,
Li
,
X.
,
Gui
,
L.
,
Lu
,
Q.
,
Zhu
,
T.
,
Gao
,
H.
, and
Lu
,
L.
,
2013
, “
Plastic Anisotropy and Associated Deformation Mechanisms in Nanotwinned Metals
,”
Acta Mater.
,
61
(
1
), pp.
217
227
. 10.1016/j.actamat.2012.09.052
18.
Zhou
,
H.
,
Li
,
X.
,
Qu
,
S.
,
Yang
,
W.
, and
Gao
,
H.
,
2014
, “
A Jogged Dislocation Governed Strengthening Mechanism in Nanotwinned Metals
,”
Nano Lett.
,
14
(
9
), pp.
5075
5080
. 10.1021/nl501755q
19.
Pan
,
Q.
,
Lu
,
Q.
, and
Lu
,
L.
,
2013
, “
Fatigue Behavior of Columnar-Grained Cu With Preferentially Oriented Nanoscale Twins
,”
Acta Mater.
,
61
(
4
), pp.
1383
1393
. 10.1016/j.actamat.2012.11.015
20.
Pan
,
Q.
, and
Lu
,
L.
,
2014
, “
Strain-Controlled Cyclic Stability and Properties of Cu With Highly Oriented Nanoscale Twins
,”
Acta Mater.
,
81
, pp.
248
257
. 10.1016/j.actamat.2014.08.011
21.
Shute
,
C. J.
,
Myers
,
B.
,
Xie
,
S.
,
Li
,
S.-Y.
,
Barbee
,
T.
,
A.
, Jr,
Hodge
, and
Weertman
,
J.
,
2011
, “
Detwinning, Damage and Crack Initiation During Cyclic Loading of Cu Samples Containing Aligned Nanotwins
,”
Acta Mater.
,
59
(
11
), pp.
4569
4577
. 10.1016/j.actamat.2011.04.002
22.
Yoo
,
B.
,
Boles
,
S. T.
,
Liu
,
Y.
,
Zhang
,
X.
,
Schwaiger
,
R.
,
Eberl
,
C.
, and
Kraft
,
O.
,
2014
, “
Quantitative Damage and Detwinning Analysis of Nanotwinned Copper Foil Under Cyclic Loading
,”
Acta Mater.
,
81
, pp.
184
193
. 10.1016/j.actamat.2014.08.021
23.
Singh
,
A.
,
Tang
,
L.
,
Dao
,
M.
,
Lu
,
L.
, and
Suresh
,
S.
,
2011
, “
Fracture Toughness and Fatigue Crack Growth Characteristics of Nanotwinned Copper
,”
Acta Mater.
,
59
(
6
), pp.
2437
2446
. 10.1016/j.actamat.2010.12.043
24.
Zhou
,
X.
,
Li
,
X.
, and
Chen
,
C.
,
2015
, “
Atomistic Mechanisms of Fatigue in Nanotwinned Metals
,”
Acta Mater.
,
99
, pp.
77
86
. 10.1016/j.actamat.2015.07.045
25.
Pan
,
Q.
,
Zhou
,
H.
,
Lu
,
Q.
,
Gao
,
H.
, and
Lu
,
L.
,
2019
, “
Asymmetric Cyclic Response of Tensile Pre-deformed Cu With Highly Oriented Nanoscale Twins
,”
Acta Mater.
,
175
, pp.
477
486
. 10.1016/j.actamat.2019.06.026
26.
Pan
,
Q.
,
Zhou
,
H.
,
Lu
,
Q.
,
Gao
,
H.
, and
Lu
,
L.
,
2017
, “
History-Independent Cyclic Response of Nanotwinned Metals
,”
Nature
,
551
(
7679
), pp.
214
217
. 10.1038/nature24266
27.
Cui
,
Y.
,
Liu
,
Z.
,
Wang
,
Z.
, and
Zhuang
,
Z.
,
2016
, “
Mechanical Annealing Under Low-Amplitude Cyclic Loading in Micropillars
,”
J. Mech. Phys. Solids
,
89
, pp.
1
15
. 10.1016/j.jmps.2016.01.011
28.
Wang
,
Z.
,
Li
,
Q.
,
Cui
,
Y.
,
Liu
,
Z.
,
Ma
,
E.
,
Li
,
J.
,
Sun
,
J.
,
Zhuang
,
Z.
,
Dao
,
M.
, and
Shan
,
Z.
,
2015
, “
Cyclic Deformation Leads to Defect Healing and Strengthening of Small-Volume Metal Crystals
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
44
), pp.
13502
13507
. 10.1073/pnas.1518200112
29.
Zhu
,
L.
,
Qu
,
S.
,
Guo
,
X.
, and
Lu
,
J.
,
2015
, “
Analysis of the Twin Spacing and Grain Size Effects on Mechanical Properties in Hierarchically Nanotwinned Face-Centered Cubic Metals Based on a Mechanism-Based Plasticity Model
,”
J. Mech. Phys. Solids
,
76
, pp.
162
179
. 10.1016/j.jmps.2014.12.001
30.
Liu
,
X.
,
Sun
,
L.
,
Zhu
,
L.
,
Liu
,
J.
,
Lu
,
K.
, and
Lu
,
J.
,
2018
, “
High-Order Hierarchical Nanotwins With Superior Strength and Ductility
,”
Acta Mater.
,
149
, pp.
397
406
. 10.1016/j.actamat.2018.01.047
31.
Lu
,
X.
,
Zhao
,
J.
,
Wang
,
Z.
,
Gan
,
B.
,
Zhao
,
J.
,
Kang
,
G.
, and
Zhang
,
X.
,
2020
, “
Crystal Plasticity Finite Element Analysis of Gradient Nanostructured TWIP Steel
,”
Int. J. Plast.
,
130
, p.
102703
. 10.1016/j.ijplas.2020.102703
32.
Zhang
,
X.
,
Romanov
,
A. E.
, and
Aifantis
,
E. C.
,
2015
, “
A Simple Physically Based Phenomenological Model for the Strengthening/Softening Behavior of Nanotwinned Copper
,”
ASME J. Appl. Mech.
,
82
(12), p.
121005
. 10.1115/1.4031291
33.
Wei
,
Y.
, and
Peng
,
S.
,
2017
, “
The Stress-Velocity Relationship of Twinning Partial Dislocations and the Phonon-Based Physical Interpretation, SCIENCE CHINA Physics
,”
Mech. Astronomy
,
60
(
11
), p.
114611
. 10.1007/s11433-017-9076-8
34.
Zhou
,
H.
, and
Zhu
,
P.
,
2020
, “
Correlated Necklace Dislocations in Highly Oriented Nanotwinned Metals
,”
J. Zhejiang University-SCIENCE A
,
21
(
4
), pp.
294
303
. 10.1631/jzus.A1900637
35.
Li
,
J.
,
Zhang
,
Q.
,
Huang
,
R.
,
Li
,
X.
, and
Gao
,
H.
,
2020
, “
Towards Understanding the Structure–Property Relationships of Heterogeneous-Structured Materials
,”
Scr. Mater.
,
186
, pp.
304
311
. 10.1016/j.scriptamat.2020.05.013
36.
Li
,
X.
,
Lu
,
L.
,
Li
,
J.
,
Zhang
,
X.
, and
Gao
,
H.
,
2020
, “
Mechanical Properties and Deformation Mechanisms of Gradient Nanostructured Metals and Alloys
,”
Nature Rev. Mater.
,
5
(
9
), pp.
706
723
. 10.1038/s41578-020-0212-2
37.
Lemaitre
,
J.
, and
Chaboche
,
J. L.
,
1994
,
Mechanics of Solid Materials
,
Cambridge University Press
,
Cambridge, UK
.
38.
Ho
,
K.
,
2016
, “
Thermodynamic Formulation of a Viscoplastic Constitutive Model Capturing Unusual Loading Rate Sensitivity
,”
Int. J. Eng. Sci.
,
100
, pp.
162
170
. 10.1016/j.ijengsci.2015.12.003
39.
Basaran
,
C.
, and
Nie
,
S.
,
2004
, “
An Irreversible Thermodynamics Theory for Damage Mechanics of Solids
,”
Int. J. Damage Mech.
,
13
(
3
), pp.
205
223
. 10.1177/1056789504041058
40.
Ribeiro
,
P.
,
Petit
,
J.
, and
Gallimard
,
L.
,
2019
, “
Experimental Determination of Entropy and Exergy in Low Cycle Fatigue
,”
Int. J. Fatigue
,
136
, p.
105333
. 10.1016/j.ijfatigue.2019.105333
41.
Khonsari
,
M. M.
, and
Amiri
,
M.
,
2012
,
Introduction to Thermodynamics of Mechanical Fatigue
,
CRC Press
,
Boca Raton, FL
.
42.
Naderi
,
M.
,
Amiri
,
M.
, and
Khonsari
,
M.
,
2010
, “
On the Thermodynamic Entropy of Fatigue Fracture
,”
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
,
466
, pp.
423
438
.
43.
Liakat
,
M.
, and
Khonsari
,
M.
,
2015
, “
On the Anelasticity and Fatigue Fracture Entropy in High-Cycle Metal Fatigue
,”
Mater. Des.
,
82
, pp.
18
27
. 10.1016/j.matdes.2015.04.034
44.
Guo
,
Q.
,
Guo
,
X.
,
Fan
,
J.
,
Syed
,
R.
, and
Wu
,
C.
,
2015
, “
An Energy Method for Rapid Evaluation of High-Cycle Fatigue Parameters Based on Intrinsic Dissipation
,”
Int. J. Fatigue
,
80
, pp.
136
144
. 10.1016/j.ijfatigue.2015.04.016
45.
Meng
,
L.
,
Goyal
,
A.
,
Doquet
,
V.
,
Ranc
,
N.
, and
Couzinié
,
J. P.
,
2019
, “
Ultrafine Versus Coarse Grained Al 5083 Alloys: From Low-Cycle to Very-High-Cycle Fatigue
,”
Int. J. Fatigue
,
121
, pp.
84
97
. 10.1016/j.ijfatigue.2018.12.004
46.
Yang
,
H.
,
Sinha
,
S. K.
,
Feng
,
Y.
,
McCallen
,
D. B.
, and
Jeremić
,
B.
,
2018
, “
Energy Dissipation Analysis of Elastic–Plastic Materials
,”
Comput. Methods Appl. Mech. Eng.
,
331
, pp.
309
326
. 10.1016/j.cma.2017.11.009
47.
Jang
,
J.
,
Mehdizadeh
,
M.
, and
Khonsari
,
M.
,
2020
, “
Nondestructive Estimation of Remaining Fatigue Life Without the Loading History
,”
Int. J. Damage Mech.
,
29
(
3
), pp.
482
502
. 10.1177/1056789519860242
48.
Shute
,
C. J.
,
Myers
,
B.
,
Xie
,
S.
,
Barbee
,
T.
,
A.
, Jr,
Hodge
, and
Weertman
,
J.
,
2009
, “
Microstructural Stability During Cyclic Loading of Multilayer Copper/Copper Samples With Nanoscale Twinning
,”
Scr. Mater.
,
60
(
12
), pp.
1073
1077
. 10.1016/j.scriptamat.2008.11.049
You do not currently have access to this content.