Abstract
In this paper, analytical developments of the biharmonic equation representing two-dimensional Stokes flow are performed with elliptical coordinates. It is found that the streamfunction is expressed with series expansions based on Gegenbauer polynomials of first and second kinds with order one and for n natural integer number. Application to an elliptical fiber enclosed in an elliptical boundary with uniform flow is made. It is found that a particular solution responsible of the drag must be added to the general solution. Following this, the flow through rectangular arrays of elliptical fibers is studied, and the permeability of this medium is determined as a function of porosity.
Issue Section:
Research Papers
References
1.
Happel
, J.
, and Brenner
, H.
, 1983
, Low-Reynolds-Number Hydrodynamics With Special Applications to Particulate Media
, Springer
, Dordrecht, The Netherlands
.2.
Pozrikidis
, C.
, 1997
, Introduction to Theoretical and Computational Fluid Dynamics
, Oxford University Press
, Oxford
.3.
Shankar
, P. N.
, 2007
, Slow Viscous Flows.
, Imperial College Press
, London
.4.
Wang
, C. Y.
, 2010
, “Flow Through a Finned Channel Filled With a Porous Medium
,” Chem. Eng. Sci.
, 65
(5
), pp. 1826
–1831
. 5.
Mittal
, R.
, Erath
, B. D.
, and Plesniak
, M. W.
, 2013
, “Fluid Dynamics of Human Phonation and Speech
,” Annu. Rev. Fluid Mech.
, 45
(1
), pp. 437
–467
. 6.
Freund
, J. B.
, 2014
, “Numerical Simulation of Flowing Blood Cells
,” Annu. Rev. Fluid Mech.
, 46
(1
), pp. 67
–95
. 7.
Berre
, I.
, Doster
, E.
, and Keilegavlen
, F.
, 2019
, “Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches
,” Transp. Porous Med.
, 130
(1
), pp. 215
–236
. 8.
Huber
, D.
, Oskooei
, A.
, Casadevall i Solvas
, X.
, and deMello
, A.
, 2018
, “Hydrodynamics in Cell Studies
,” Chem. Rev.
, 118
(4
), pp. 2042
–2079
. 9.
Toschi
, F.
, and Sega
, M.
, 2019
, Flowing Matter
, SpringerOpen
, Berlin
.10.
Mayzel
, J.
, Steinberg
, V.
, and Varshney
, A.
, 2019
, “Stokes Flow Analogous to Viscous Electron Current in Graphene
,” Nat. Commun.
, 10
(1
), pp. 1
–6
. 11.
Sangani
, A. S.
, and Acrivos
, A.
, 1982
, “Slow Flow Past Periodic Arrays of Cylinders With Application to Heat Transfer
,” Int. J. Multiphase flow
, 8
(3
), pp. 193
–206
. 12.
Wang
, C. Y.
, 1996
, “Stokes Flow Through An Array of Rectangular Fibers
,” Int. J. Multiphase. Flow.
, 22
(1
), pp. 185
–194
. 13.
Raynor
, P. C.
, 2002
, “Flow Field and Drag for Elliptical Filter Fibers
,” Aerosol Sci. Technol.
, 36
(12
), pp. 1118
–1127
. 14.
Hellou
, M.
, Martinez
, J.
, and El Yazidi
, M.
, 2004
, “Stokes Flow Through Microstructural Model of Fibrous Media
,” Mech. Res. Commun.
, 61
(1
), pp. 97
–103
. 15.
Yazdchi
, K.
, Srivastava
, S.
, and Luding
, S.
, 2011
, “Microstructural Effects on the Permeability of Periodic Fibrous Porous Media
,” Int. J. Multiphase flow
, 37
(8
), pp. 956
–966
. 16.
Tamayol
, A.
, Wong
, K. W.
, and Bahrami
, M.
, 2012
, “Effects of Microstructure on Flow Properties of Fibrous Porous Media at Moderate Reynolds Number
,” Phys. Rev. E
, 85
(2
), p. 026318
. 17.
Bourbatache
, M. K.
, Hellou
, M.
, and Lominé
, F.
, 2019
, “Two-Scale Analysis of the Permeability of 3d Periodic Granular and Fibrous Media
,” Acta Mech.
, 230
(10
), pp. 3703
–3721
. 18.
Hasimoto
, H.
, 1953
, “On the Flow of a Viscous Fluid Past An Inclined Elliptic Cylinder At Small Reynolds Numbers
,” J. Phys. Soc. Japan
, 8
(5
), pp. 653
–661
. 19.
Shintani
, K.
, Umemura
, A.
, and Tkano
, A.
, 1983
, “Low-Reynolds-Number Flow Past An Elliptic Cylinder
,” J. Fluid Mech.
, 136
(11
), pp. 277
–289
. 20.
Skinner
, L. A.
, 1975
, “Generalized Expansions for Slow Flow Past a Cylinder
,” Q. J. Mech. Appl. Maths.
, 28
(3
), pp. 333
–340
. 21.
Kuwabara
, S.
, 1959
, “The Forces Experienced by Randomly Distributed Parallel Circular Cylinders Or Spheres in a Viscous Flow At Small Reynolds Number
,” J. Phys. Soc. Jpn
, 14
(4
), pp. 527
–532
. 22.
Lee
, S. H.
, and Leal
, L. G.
, 1986
, “Low-Reynolds-Number Flow Past Cylindrical Bodies of Arbitrary Cross-Sectional Shape
,” J. Fluid Mech.
, 164
(3
), pp. 401
–427
. 23.
Cox
, S. M.
, and Finn
, M. D.
, 2007
, “Two-Dimensional Stokes Flow Driven by Elliptic Paddles
,” Phys. Fluids
, 19
(11
), p. 113102
. 24.
Matsumura
, Y.
, Jenne
, D.
, and Jackson
, T. L.
, 2015
, “Numerical Simulation of Fluid Flow Through Random Packs of Ellipses
,” Phys. Fluids.
, 27
(2
), p. 023301
. 25.
Khalili
, A.
, and Liu
, B.
, 2017
, “Stokes’Paradox: Creeping Flow Past a Two-Dimensional Cylinder in An Infinite Domain
,” J. Fluid Mech.
, 817
(3
), pp. 374
–387
. 26.
Smith
, S. H.
, 1987
, “A Note on the Stokes’paradox
,” Q. Appl. Maths.
, 45
(3
), pp. 529
–531
. 27.
Bell
, W. W.
, 1968
, Special Functions for Scientists and Engineers
, D. Van Nostrand company LTD
, Londres
.28.
Robin
, L.
, 1959
, Fonctions Sphériques De Legendre Et Fonctions Sphéroïdales, III
, Gauthier-Villars
, Paris
.29.
Boutin
, C.
, 2000
, “Study of Permeability by Periodic and Self-consistent Homogenisation
,” Eur. J. Mech.-A/Solids
, 19
(4
), pp. 603
–632
. 30.
Rodriguez
, E.
, Giacomelli
, F.
, and Vazquez
, A.
, 2004
, “Permeability-Porosity Relationship in Rtm for Different Fiberglass and Natural Reinforcements
,” J. Compos. Mater.
, 38
(3
), pp. 259
–268
. 31.
Rocha
, R. P. A.
, and Cruz
, M. E.
, 2010
, “Calculation of the Permeability and Apparent Permeability of Three-Dimensional Porous Media
,” Transp. Porous Med.
, 83
(2
), pp. 349
–373
. 32.
Tamayol
, A.
, and Bahrami
, A.
, 2009
, “Analytical Determination of Viscous Permeability of Fibrous Porous Media
,” Int. J. Heat Mass Transfer
, 52
(9
), pp. 2407
–2414
. 33.
Gilbert
, P. H.
, and Giacomin
, A. J.
, 2019
, “Transport Phenomena in Bispherical Coordinates
,” Phys. Fluids
, 31
(2
), p. 021208
. 34.
Bouard
, R.
, and Coutanceau
, M.
, 1986
, “Etude théorique et expérimentale de l’écoulement engendré par un cylindre en translation uniforme dans un fluide visqueux en régime de stokes
,” Z. Angew. Math. Phys.
, 37
(5
), pp. 673
–684
. Copyright © 2021 by ASME
You do not currently have access to this content.