Abstract

A numerical formulation coupling finite and boundary element methods is developed to analyze the mechanical deformation and electric polarization of flexoelectric solids experiencing geometrically nonlinear deformation. The proposed method considers the electrical interactions among flexoelectric solids, electric charges, and their surrounding medium. First, a higher-order gradient theory is proposed based on the skew-symmetric couple-stress model to analyze the geometrically nonlinear deformation of flexoelectric solids. This theory includes a total Lagrangian weak form that satisfies linear momentum conservation, angular momentum conservation, and Gauss’s law. Based on the proposed theory, a finite element is developed using basis functions that satisfy C1 continuity. Second, a coupled formulation is developed to consider the electrical interactions among solids, electric charges, and their surrounding medium. In this formulation, conventional boundary elements are adopted to account for the electrostatic surroundings. Besides, electric boundary conditions are naturally imposed on solid boundaries according to the electrical interactions between solids and their electrostatic surroundings. Finally, the proposed method is validated via the comparisons of the numerical results with closed-form solutions.

References

1.
Cady
,
W. G.
,
2018
,
Piezoelectricity: Volume Two: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals
,
Courier Dover Publications
,
New York
.
2.
Mashkevich
,
V.
, and
Tolpygo
,
K.
,
1957
, “
Electrical, Optical and Elastic Properties of Diamond Type Crystals
,”
Sov. Phys. JETP
,
5
(
3
), pp.
435
439
.
3.
Kogan
,
S. M.
,
1964
, “
Piezoelectric Effect During Inhomogeneous Deformation and Acoustic Scattering of Carriers in Crystals
,”
Sov. Phys. Solid State
,
5
(
10
), pp.
2069
2070
.
4.
Tagantsev
,
A.
,
1985
, “
Theory of Flexoelectric Effect in Crystals
,”
Zh. Eksp. Teor. Fiz.
,
88
(
6
), pp.
2108
2122
.
5.
Li
,
Z.
,
Deng
,
Q.
, and
Shen
,
S.
,
2020
, “
Flexoelectric Energy Harvesting Using Circular Thin Membranes
,”
ASME J. Appl. Mech.
,
87
(
9
), p.
091004
.https://doi.org/10.1115/1.4047131
6.
Bhaskar
,
U. K.
,
Banerjee
,
N.
,
Abdollahi
,
A.
,
Wang
,
Z.
,
Schlom
,
D. G.
,
Rijnders
,
G.
, and
Catalan
,
G.
,
2016
, “
A Flexoelectric Microelectromechanical System on Silicon
,”
Nat. Nanotechnol.
,
11
(
3
), pp.
263
266
. 10.1038/nnano.2015.260
7.
Jiang
,
X.
,
Huang
,
W.
, and
Zhang
,
S.
,
2013
, “
Flexoelectric Nano-generator: Materials, Structures and Devices
,”
Nano Energy
,
2
(
6
), pp.
1079
1092
. 10.1016/j.nanoen.2013.09.001
8.
Huang
,
W.
,
Yan
,
X.
,
Kwon
,
S. R.
,
Zhang
,
S.
,
Yuan
,
F.-G.
, and
Jiang
,
X.
,
2012
, “
Flexoelectric Strain Gradient Detection Using Ba0. 64Sr0. 36TiO3 for Sensing
,”
Appl. Phys. Lett.
,
101
(
25
), p.
252903
. 10.1063/1.4772803
9.
Pelrine
,
R.
,
Kornbluh
,
R.
,
Pei
,
Q.
, and
Joseph
,
J.
,
2000
, “
High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%
,”
Science
,
287
(
5454
), pp.
836
839
. 10.1126/science.287.5454.836
10.
Meyer
,
R. B.
,
1969
, “
Piezoelectric Effects in Liquid Crystals
,”
Phys. Rev. Lett.
,
22
(
18
), p.
918
921
. 10.1103/PhysRevLett.22.918
11.
Tagantsev
,
A.
,
1986
, “
Piezoelectricity and Flexoelectricity in Crystalline Dielectrics
,”
Phys. Rev. B
,
34
(
8
), p.
5883
5889
. 10.1103/PhysRevB.34.5883
12.
Nguyen
,
T. D.
,
Mao
,
S.
,
Yeh
,
Y. W.
,
Purohit
,
P. K.
, and
McAlpine
,
M. C.
,
2013
, “
Nanoscale Flexoelectricity
,”
Adv. Mater.
,
25
(
7
), pp.
946
974
. 10.1002/adma.201203852
13.
Tagantsev
,
A. K.
, and
Yudin
,
P. V.
,
2016
,
Flexoelectricity in Solids: From Theory to Applications
,
World Scientific
,
Singapore
.
14.
Wang
,
B.
,
Gu
,
Y.
,
Zhang
,
S.
, and
Chen
,
L.-Q.
,
2019
, “
Flexoelectricity in Solids: Progress, Challenges, and Perspectives
,”
Prog. Mater. Sci.
,
106
, p.
100570
. 10.1016/j.pmatsci.2019.05.003
15.
Yudin
,
P.
, and
Tagantsev
,
A.
,
2013
, “
Fundamentals of Flexoelectricity in Solids
,”
Nanotechnology
,
24
(
43
), p.
432001
. 10.1088/0957-4484/24/43/432001
16.
Zubko
,
P.
,
Catalan
,
G.
, and
Tagantsev
,
A. K.
,
2013
, “
Flexoelectric Effect in Solids
,”
Annu. Rev. Mater. Res.
,
43
(
1
), pp.
387
421
. 10.1146/annurev-matsci-071312-121634
17.
Krichen
,
S.
, and
Sharma
,
P.
,
2016
, “
Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling
,”
ASME J. Appl. Mech.
,
83
(
3
). 10.1115/1.4032378
18.
Deng
,
Q.
,
Lv
,
S.
,
Li
,
Z.
,
Tan
,
K.
,
Liang
,
X.
, and
Shen
,
S.
,
2020
, “
The Impact of Flexoelectricity on Materials, Devices, and Physics
,”
J. Appl. Phys.
,
128
(
8
), p.
080902
. 10.1063/5.0015987
19.
Cauchy
,
A.-L.
,
1851
, “
Note sur L’equilibre et les Mouvements Vibratoires des Corps Solides
,”
CR Acad. Sci.
,
32
, pp.
323
326
.
20.
Voight
,
W.
,
1887
, “
Theoretische Studien uber die Elasticitatsverhaltnisse des Krystalle, I, II
,”
Abh. Ges. Wiss., Gottingen
.
21.
Cosserat
,
E.
, and
Cosserat
,
F.
,
1909
, “
Theorie des corps dédormables (Theory of Deformable Bodies)
,”
Librairie Scientifique A. Hermann et fils, Paris
.
22.
Polizzotto
,
C.
,
2015
, “
A Unifying Variational Framework for Stress Gradient and Strain Gradient Elasticity Theories
,”
Eur. J. Mech. A. Solids
,
49
, pp.
430
440
. 10.1016/j.euromechsol.2014.08.013
23.
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2011
, “
Couple Stress Theory for Solids
,”
Int. J. Solids Struct.
,
48
(
18
), pp.
2496
2510
. 10.1016/j.ijsolstr.2011.05.002
24.
Yang
,
F.
,
Chong
,
A.
,
Lam
,
D. C. C.
, and
Tong
,
P.
,
2002
, “
Couple Stress Based Strain Gradient Theory for Elasticity
,”
Int. J. Solids Struct.
,
39
(
10
), pp.
2731
2743
. 10.1016/S0020-7683(02)00152-X
25.
Eringen
,
A. C.
,
1972
, “
Nonlocal Polar Elastic Continua
,”
Int. J. Eng. Sci.
,
10
(
1
), pp.
1
16
. 10.1016/0020-7225(72)90070-5
26.
Mindlin
,
R. D.
, and
Eshel
,
N.
,
1968
, “
On First Strain-Gradient Theories in Linear Elasticity
,”
Int. J. Solids Struct.
,
4
(
1
), pp.
109
124
. 10.1016/0020-7683(68)90036-X
27.
Eringen
,
A. C.
,
1966
, “
Linear Theory of Micropolar Elasticity
,”
J. Math. Mech.
,
15
(
6
), pp.
909
923
.
28.
Mindlin
,
R. D.
,
1965
, “
Second Gradient of Strain and Surface-Tension in Linear Elasticity
,”
Int. J. Solids Struct.
,
1
(
4
), pp.
417
438
. 10.1016/0020-7683(65)90006-5
29.
Toupin
,
R. A.
,
1964
, “
Theories of Elasticity With Couple-Stress
,”
Arch. Ration. Mech. Anal.
,
17
(
2
), pp.
85
112
. 10.1007/BF00253050
30.
Mindlin
,
R. D.
,
1964
, “
Micro-structure in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
16
(
1
), pp.
51
78
. 10.1007/BF00248490
31.
Kolter
,
W.
,
1964
, “
Couple Stresses in the Theory of Elasticity
,”
Proc. Koninklijke Nederl. Akaad. van Wetensch
,
67
, p.
20
.
32.
Green
,
A. E.
, and
Rivlin
,
R. S.
,
1964
, “
Multipolar Continuum Mechanics
,”
Arch. Ration. Mech. Anal.
,
17
(
2
), pp.
113
147
. 10.1007/BF00253051
33.
Kröner
,
E.
,
1963
, “
On the Physical Reality of Torque Stresses in Continuum Mechanics
,”
Int. J. Eng. Sci.
,
1
(
2
), pp.
261
278
. 10.1016/0020-7225(63)90037-5
34.
Toupin
,
R.
,
1962
, “
Elastic Materials With Couple-Stresses
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
385
414
. 10.1007/BF00253945
35.
Mindlin
,
R. D.
, and
Tiersten
,
H. F.
,
1962
, “
Effects of Couple-Stresses in Linear Elasticity
,”
Arch. Ration. Mech. Anal.
,
11
(
1
), pp.
415
448
. 10.1007/BF00253946
36.
Ghiba
,
I.-D.
,
Neff
,
P.
,
Madeo
,
A.
, and
Münch
,
I.
,
2017
, “
A Variant of the Linear Isotropic Indeterminate Couple-Stress Model With Symmetric Local Force-Stress, Symmetric Nonlocal Force-Stress, Symmetric Couple-Stresses and Orthogonal Boundary Conditions
,”
Math. Mech. Solids
,
22
(
6
), pp.
1221
1266
. 10.1177/1081286515625535
37.
Mindlin
,
R. D.
,
1968
, “
Polarization Gradient in Elastic Dielectrics
,”
Int. J. Solids Struct.
,
4
(
6
), pp.
637
642
. 10.1016/0020-7683(68)90079-6
38.
Sahin
,
E.
, and
Dost
,
S.
,
1988
, “
A Strain-Gradients Theory of Elastic Dielectrics With Spatial Dispersion
,”
Int. J. Eng. Sci.
,
26
(
12
), pp.
1231
1245
. 10.1016/0020-7225(88)90043-2
39.
Sharma
,
N.
,
Landis
,
C.
, and
Sharma
,
P.
,
2010
, “
Piezoelectric Thin-Film Superlattices Without Using Piezoelectric Materials
,”
J. Appl. Phys.
,
108
(
2
), p.
024304
. 10.1063/1.3443404
40.
Maranganti
,
R.
, and
Sharma
,
P.
,
2009
, “
Atomistic Determination of Flexoelectric Properties of Crystalline Dielectrics
,”
Phys. Rev. B
,
80
(
5
), p.
054109
. 10.1103/PhysRevB.80.054109
41.
Majdoub
,
M.
,
Sharma
,
P.
, and
Cagin
,
T.
,
2008
, “
Enhanced Size-Dependent Piezoelectricity and Elasticity in Nanostructures due to the Flexoelectric Effect
,”
Phys. Rev. B
,
77
(
12
), p.
125424
. 10.1103/PhysRevB.77.125424
42.
Sharma
,
N.
,
Maranganti
,
R.
, and
Sharma
,
P.
,
2007
, “
On the Possibility of Piezoelectric Nanocomposites Without Using Piezoelectric Materials
,”
J. Mech. Phys. Solids
,
55
(
11
), pp.
2328
2350
. 10.1016/j.jmps.2007.03.016
43.
Maranganti
,
R.
,
Sharma
,
N.
, and
Sharma
,
P.
,
2006
, “
Electromechanical Coupling in Nonpiezoelectric Materials due to Nanoscale Nonlocal Size Effects: Green’s Function Solutions and Embedded Inclusions
,”
Phys. Rev. B
,
74
(
1
), p.
014110
. 10.1103/PhysRevB.74.014110
44.
Codony
,
D.
,
Gupta
,
P.
,
Marco
,
O.
, and
Arias
,
I.
,
2021
, “
Modeling Flexoelectricity in Soft Dielectrics at Finite Deformation
,”
J. Mech. Phys. Solids
,
146
, p.
104182
. 10.1016/j.jmps.2020.104182
45.
Liu
,
L.
,
2014
, “
An Energy Formulation of Continuum Magneto-electro-elasticity With Applications
,”
J. Mech. Phys. Solids
,
63
, pp.
451
480
. 10.1016/j.jmps.2013.08.001
46.
Wang
,
G.-F.
,
Yu
,
S.-W.
, and
Feng
,
X.-Q.
,
2004
, “
A Piezoelectric Constitutive Theory With Rotation Gradient Effects
,”
Eur. J. Mech. A. Solids
,
23
(
3
), pp.
455
466
. 10.1016/j.euromechsol.2003.12.005
47.
Hadjesfandiari
,
A. R.
,
2013
, “
Size-Dependent Piezoelectricity
,”
Int. J. Solids Struct.
,
50
(
18
), pp.
2781
2791
. 10.1016/j.ijsolstr.2013.04.020
48.
Poya
,
R.
,
Gil
,
A. J.
,
Ortigosa
,
R.
, and
Palma
,
R.
,
2019
, “
On a Family of Numerical Models for Couple Stress Based Flexoelectricity for Continua and Beams
,”
J. Mech. Phys. Solids
,
125
, pp.
613
652
. 10.1016/j.jmps.2019.01.013
49.
Abdollahi
,
A.
,
Peco
,
C.
,
Millan
,
D.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2014
, “
Computational Evaluation of the Flexoelectric Effect in Dielectric Solids
,”
J. Appl. Phys.
,
116
(
9
), p.
093502
. 10.1063/1.4893974
50.
Zhuang
,
X.
,
Nanthakumar
,
S.
, and
Rabczuk
,
T.
,
2020
, “
A Meshfree Formulation for Large Deformation Analysis of Flexoelectric Structures Accounting for the Surface Effects
,”
Eng. Anal. Boundary Elem.
,
120
, pp.
153
165
. 10.1016/j.enganabound.2020.07.021
51.
Yvonnet
,
J.
, and
Liu
,
L.
,
2017
, “
A Numerical Framework for Modeling Flexoelectricity and Maxwell Stress in Soft Dielectrics at Finite Strains
,”
Comput. Methods Appl. Mech. Eng.
,
313
, pp.
450
482
. 10.1016/j.cma.2016.09.007
52.
Do
,
H. V.
,
Lahmer
,
T.
,
Zhuang
,
X.
,
Alajlan
,
N.
,
Nguyen-Xuan
,
H.
, and
Rabczuk
,
T.
,
2019
, “
An Isogeometric Analysis to Identify the Full Flexoelectric Complex Material Properties Based on Electrical Impedance Curve
,”
Comput. Struct.
,
214
, pp.
1
14
. 10.1016/j.compstruc.2018.10.019
53.
Liu
,
C.
,
Wang
,
J.
,
Xu
,
G.
,
Kamlah
,
M.
, and
Zhang
,
T.-Y.
,
2019
, “
An Isogeometric Approach to Flexoelectric Effect in Ferroelectric Materials
,”
Int. J. Solids Struct.
,
162
, pp.
198
210
. 10.1016/j.ijsolstr.2018.12.008
54.
Nguyen
,
B.
,
Zhuang
,
X.
, and
Rabczuk
,
T.
,
2019
, “
NURBS-Based Formulation for Nonlinear Electro-gradient Elasticity in Semiconductors
,”
Comput. Methods Appl. Mech. Eng.
,
346
, pp.
1074
1095
. 10.1016/j.cma.2018.08.026
55.
Kim
,
M.
,
2021
, “
A Coupled Formulation of Finite and Boundary Element Methods for Flexoelectric Solids
,”
Finite Elem. Anal. Des.
,
189
, p.
103526
. 10.1016/j.finel.2021.103526
56.
Molari
,
L.
,
Wells
,
G. N.
,
Garikipati
,
K.
, and
Ubertini
,
F.
,
2006
, “
A Discontinuous Galerkin Method for Strain Gradient-Dependent Damage: Study of Interpolations and Convergence
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
13–16
), pp.
1480
1498
. 10.1016/j.cma.2005.05.026
57.
Baumann
,
C. E.
, and
Oden
,
J. T.
,
1999
, “
A Discontinuous HP Finite Element Method for Convection—Diffusion Problems
,”
Comput. Methods Appl. Mech. Eng.
,
175
(
3–4
), pp.
311
341
. 10.1016/S0045-7825(98)00359-4
58.
Engel
,
G.
,
Garikipati
,
K.
,
Hughes
,
T.
,
Larson
,
M.
,
Mazzei
,
L.
, and
Taylor
,
R. L.
,
2002
, “
Continuous/Discontinuous Finite Element Approximations of Fourth-Order Elliptic Problems in Structural and Continuum Mechanics With Applications to Thin Beams and Plates, and Strain Gradient Elasticity
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
34
), pp.
3669
3750
. 10.1016/S0045-7825(02)00286-4
59.
Mao
,
S.
,
Purohit
,
P. K.
, and
Aravas
,
N.
,
2016
, “
“Mixed Finite-Element Formulations in Piezoelectricity and Flexoelectricity,” Proceedings of the Royal Society A: Mathematical
,”
Phys. Eng. Sci.
,
472
(
2190
), p.
20150879
.
60.
Deng
,
F.
,
Deng
,
Q.
,
Yu
,
W.
, and
Shen
,
S.
,
2017
, “
Mixed Finite Elements for Flexoelectric Solids
,”
ASME J. Appl. Mech.
,
84
(
8
), p.
081004
. 10.1115/1.4036939
61.
Deng
,
F.
,
Deng
,
Q.
, and
Shen
,
S.
,
2018
, “
A Three-Dimensional Mixed Finite Element for Flexoelectricity
,”
ASME J. Appl. Mech.
,
85
(
3
), p.
031009
. 10.1115/1.4038919
62.
Darrall
,
B. T.
,
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2015
, “
Size-Dependent Piezoelectricity: A 2D Finite Element Formulation for Electric Field-Mean Curvature Coupling in Dielectrics
,”
Eur. J. Mech. A. Solids
,
49
, pp.
308
320
. 10.1016/j.euromechsol.2014.07.013
63.
Chakravarty
,
S.
,
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2017
, “
A Penalty-Based Finite Element Framework for Couple Stress Elasticity
,”
Finite Elem. Anal. Des.
,
130
, pp.
65
79
. 10.1016/j.finel.2016.11.004
64.
Amanatidou
,
E.
, and
Aravas
,
N.
,
2002
, “
Mixed Finite Element Formulations of Strain-Gradient Elasticity Problems
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
15–16
), pp.
1723
1751
. 10.1016/S0045-7825(01)00353-X
65.
Shu
,
J. Y.
,
King
,
W. E.
, and
Fleck
,
N. A.
,
1999
, “
Finite Elements for Materials With Strain Gradient Effects
,”
Int. J. Numer. Methods Eng.
,
44
(
3
), pp.
373
391
. 10.1002/(SICI)1097-0207(19990130)44:3<373::AID-NME508>3.0.CO;2-7
66.
Zienkiewicz
,
O.
, and
Taylor
,
R. L.
,
1997
, “
The Finite Element Patch Test Revisited a Computer Test for Convergence, Validation and Error Estimates
,”
Comput. Methods Appl. Mech. Eng.
,
149
(
1–4
), pp.
223
254
. 10.1016/S0045-7825(97)00085-6
67.
Barbosa
,
H. J.
, and
Hughes
,
T. J.
,
1991
, “
The Finite Element Method with Lagrange Multipliers on the Boundary: Circumventing the Babuška-Brezzi Condition
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
1
), pp.
109
128
. 10.1016/0045-7825(91)90125-P
68.
Brezzi
,
F.
, and
Bathe
,
K.-J.
,
1990
, “
A Discourse on the Stability Conditions for Mixed Finite Element Formulations
,”
Comput. Methods Appl. Mech. Eng.
,
82
(
1–3
), pp.
27
57
. 10.1016/0045-7825(90)90157-H
69.
Brezzi
,
F.
,
1974
, “
On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers
,”
R.A.I.R.O. Analyse Numerique
,
8
(
R2
), pp.
129
151
.
70.
Abdollahi
,
A.
, and
Arias
,
I.
,
2015
, “
Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators
,”
ASME J. Appl. Mech.
,
82
(
12
). 10.1115/1.4031333
71.
Abdollahi
,
A.
,
Peco
,
C.
,
Millán
,
D.
,
Arroyo
,
M.
,
Catalan
,
G.
, and
Arias
,
I.
,
2015
, “
Fracture Toughening and Toughness Asymmetry Induced by Flexoelectricity
,”
Phys. Rev. B
,
92
(
9
), p.
094101
. 10.1103/PhysRevB.92.094101
72.
Abdollahi
,
A.
,
Millán
,
D.
,
Peco
,
C.
,
Arroyo
,
M.
, and
Arias
,
I.
,
2015
, “
Revisiting Pyramid Compression to Quantify Flexoelectricity: A Three-Dimensional Simulation Study
,”
Phys. Rev. B
,
91
(
10
), p.
104103
. 10.1103/PhysRevB.91.104103
73.
Hajesfandiari
,
A.
,
Hadjesfandiari
,
A. R.
, and
Dargush
,
G. F.
,
2016
, “
Boundary Element Formulation for Plane Problems in Size-Dependent Piezoelectricity
,”
Int. J. Numer. Methods Eng.
,
108
(
7
), pp.
667
694
. 10.1002/nme.5227
74.
Mao
,
Y.
,
Ai
,
S.
,
Xiang
,
X.
, and
Chen
,
C.
,
2016
, “
Theory for Dielectrics Considering the Direct and Converse Flexoelectric Effects and Its Finite Element Implementation
,”
Appl. Math. Model.
,
40
(
15–16
), pp.
7115
7137
. 10.1016/j.apm.2015.12.042
75.
Tian
,
X.
,
Sladek
,
J.
,
Sladek
,
V.
,
Deng
,
Q.
, and
Li
,
Q.
,
2021
, “
A Collocation Mixed Finite Element Method for the Analysis of Flexoelectric Solids
,”
Int. J. Solids Struct.
,
217
, pp.
27
39
. 10.1016/j.ijsolstr.2021.01.031
76.
Thai
,
T. Q.
,
Rabczuk
,
T.
, and
Zhuang
,
X.
,
2018
, “
A Large Deformation Isogeometric Approach for Flexoelectricity and Soft Materials
,”
Comput. Methods Appl. Mech. Eng.
,
341
, pp.
718
739
. 10.1016/j.cma.2018.05.019
77.
Thai
,
T. Q.
,
Zhuang
,
X.
,
Park
,
H. S.
, and
Rabczuk
,
T.
,
2021
, “
A Staggered Explicit-Implicit Isogeometric Formulation for Large Deformation Flexoelectricity
,”
Eng. Anal. Boundary Elem.
,
122
, pp.
1
12
. 10.1016/j.enganabound.2020.10.004
78.
Codony
,
D.
,
Marco
,
O.
,
Fernández-Méndez
,
S.
, and
Arias
,
I.
,
2019
, “
An Immersed Boundary Hierarchical B-Spline Method for Flexoelectricity
,”
Comput. Methods Appl. Mech. Eng.
,
354
, pp.
750
782
. 10.1016/j.cma.2019.05.036
79.
Dasgupta
,
S.
, and
Sengupta
,
D.
,
1990
, “
A Higher-Order Triangular Plate Bending Element Revisited
,”
Int. J. Numer. Methods Eng.
,
30
(
3
), pp.
419
430
. 10.1002/nme.1620300303
80.
Zienkiewicz
,
O.
,
Taylor
,
R.
, and
Zhu
,
J.
,
2005
,
The Finite Element Method: Its Basis and Fundamentals
,
Elsevier Butterworth Heinemann
,
New York
.
81.
Dunavant
,
D.
,
1985
, “
High Degree Efficient Symmetrical Gaussian Quadrature Rules for the Triangle
,”
Int. J. Numer. Methods Eng.
,
21
(
6
), pp.
1129
1148
. 10.1002/nme.1620210612
82.
Green
,
G.
,
1828
,
An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism
,
Wezäta-Melins Aktiebolag
,
Nottingham, UK
.
83.
Kythe
,
P.
,
2012
,
Fundamental Solutions for Differential Operators and Applications
,
Springer Science & Business Media
,
New York
.
84.
Brebbia
,
C.
, and
Dominguez
,
J.
,
1977
, “
Boundary Element Methods for Potential Problems
,”
Appl. Math. Model.
,
1
(
7
), pp.
372
378
. 10.1016/0307-904X(77)90046-4
85.
Jaswon
,
M.
,
1963
, “
Integral Equation Methods in Potential Theory. I
,”
Proc. R. Soc. London, A
,
275
(
1360
), pp.
23
32
. 10.1098/rspa.1963.0152
86.
Symm
,
G.
,
1963
, “
Integral Equation Methods in Potential Theory. II
,”
Proc. R. Soc. London, A
,
275
(
1360
), pp.
33
46
. 10.1098/rspa.1963.0153
You do not currently have access to this content.