Abstract

Metamaterials are man-made materials engineered to possess certain desired and often counterintuitive properties. It is well-known that elastic metamaterials may exhibit unusual bulk elastic properties when subject to dynamic loads at certain frequencies, such as negative Poisson’s ratio, negative modulus, and/or negative mass density. This paper focuses on the modeling of a one-dimensional micropolar-type elastic metamaterial subject to transient dynamic loading. The metamaterial consists of unit cells that support both translational and rotational motion and can be modeled as a micropolar-type continuum. Interestingly, the equations governing the dynamics of the new micropolar-type continuum possess remarkable similitude with those governing the transient response of an elastic bar with elastic supports. The resulting governing equation is solved using the Fourier transform technique. The transient dynamic response of the metamaterial subject to an axial impact is then studied based on both the developed continuum model and the original discrete model. Finite element analysis of the equivalent bar model is also conducted. The results from the developed continuum model is compared with the discrete model and the finite element analysis to evaluate its suitability. This work presents a novel micropolar-type model for a specific metamaterial and investigates its transient response using both continuum modeling and discrete unit cell modeling. The results indicate that the micropolar-type model can accurately capture the transient behavior of the propagation of the strain pulse in the metamaterial

References

1.
Silin
,
R. A.
,
2012
, “
On the History of Backward Electromagnetic Waves in Metamaterials
,”
Metamaterials
,
6
(
1-2
), pp.
1
7
.
2.
Moghbeli
,
E.
,
Askari
,
H. R.
, and
Forouzeshfard
,
M. R.
,
2018
, “
The Effect of Geometric Parameters of a Single-Gap SRR Metamaterial on Its Electromagnetic Properties As a Unit Cell of Interior Invisibility Cloak in the Microwave Regime
,”
Optic. Laser Technol.
,
108
, pp.
626
633
.
3.
Zhao
,
G.
,
Bi
,
S.
,
Niu
,
M.
, and
Cui
,
Y.
,
2019
, “
A Zero Refraction Metamaterial and Its Application in Electromagnetic Stealth Cloak
,”
Mater. Today Commun.
,
21
, p.
100603
.
4.
Chen
,
Z.
,
Song
,
X.
,
Lei
,
L.
,
Chen
,
X.
,
Fei
,
C.
,
Tat Chiu
,
C.
,
Qian
,
X.
,
Ma
,
T.
,
Yang
,
Y.
,
Shung
,
K.
,
Chen
,
Y.
, and
Zhou
,
Q.
,
2016
, “
3d Printing of Piezoelectric Element for Energy Focusing and Ultrasonic Sensing
,”
Nano Energy
,
27
, pp.
78
86
.
5.
Pan
,
C. T.
,
Chen
,
Y. C.
,
Hsieh
,
C. C.
,
Lin
,
C. H.
,
Su
,
C. Y.
,
Yen
,
C. K.
,
Liu
,
Z. H.
, and
Wang
,
W. C.
,
2014
, “
Ultrasonic Sensing Device With Zno Piezoelectric Nanorods by Selectively Electrospraying Method
,”
Sens. Actuators. A.
,
216
, pp.
318
327
.
6.
Dudek
,
K. K.
,
Gatt
,
R.
, and
Grima
,
J. N.
,
2020
, “
3d Composite Metamaterial With Magnetic Inclusions Exhibiting Negative Stiffness and Auxetic Behaviour
,”
Mater. Des.
,
187
, p.
108403
.
7.
Li
,
Z.
, and
Wang
,
X.
,
2016
, “
On the Dynamic Behaviour of a Two-Dimensional Elastic Metamaterial System
,”
Int. J. Solids. Struct.
,
78–79
, pp.
174
181
.
8.
Li
,
Z.
,
Hu
,
H.
, and
Wang
,
X.
,
2018
, “
A New Two-dimensional Elastic Metamaterial System With Multiple Local Resonances
,”
Int. J. Mech. Sci.
,
149
, pp.
273
284
.
9.
Li
,
Z.
,
Wang
,
C.
, and
Wang
,
X.
,
2019
, “
Modelling of Elastic Metamaterials With Negative Mass and Modulus Based on Translational Resonance
,”
Int. J. Solids. Struct.
,
162
, pp.
271
284
.
10.
Li
,
D.
,
Gao
,
R.
,
Dong
,
L.
,
Lam
,
W.-K.
, and
Zhang
,
F.
,
2020
, “
A Novel 3D Re-Entrant Unit Cell Structure with Negative Poisson’s Ratio and Tunable Stiffness
,”
Smart Mater. Struct.
,
29
(
4
), p.
045015
.
11.
Ren
,
C.
,
Yang
,
D.
, and
Qin
,
H.
,
2018
, “
Mechanical Performance of Multidirectional Buckling-Based Negative Stiffness Metamaterials: An Analytical and Numerical Study
,”
Materials
,
11
(
7
), p.
1078
.
12.
Zhakatayev
,
A.
,
Kappassov
,
Z.
, and
Varol
,
H. A.
,
2020
, “
Analytical Modeling and Design of Negative Stiffness Honeycombs
,”
Smart Mater. Struct.
,
29
(
4
), p.
045024
.
13.
Tan
,
X.
,
Wang
,
B.
,
Zhu
,
S.
,
Chen
,
S.
,
Yao
,
K.
,
Xu
,
P.
,
Wu
,
L.
, and
Sun
,
Y.
,
2019
, “
Novel Multidirectional Negative Stiffness Mechanical Metamaterials
,”
Smart Mater. Struct.
,
29
(
1
), p.
015037
.
14.
Jaberzadeh
,
M.
,
Li
,
B.
, and
Tan
,
K. T.
,
2019
, “
Wave Propagation in an Elastic Metamaterial With Anisotropic Effective Mass Density
,”
Wave Motion
,
89
, pp.
131
141
.
15.
Shaat
,
M.
, and
El Dhaba
,
A. R.
,
2019
, “
On the Equivalent Shear Modulus of Composite Metamaterials
,”
Compos. Part B: Engin.
,
172
, pp.
506
515
.
16.
Wang
,
W.
,
Bonello
,
B.
,
Djafari-Rouhani
,
B.
,
Pennec
,
Y.
, and
Zhao
,
J.
,
2020
, “
Elastic Stubbed Metamaterial Plate With Torsional Resonances
,”
Ultrasonics
,
106
, p.
106142
.
17.
Zhong
,
R.
,
Fu
,
M.
,
Chen
,
X.
,
Zheng
,
B.
, and
Hu
,
L.
,
2019
, “
A Novel Three-Dimensional Mechanical Metamaterial With Compression-Torsion Properties
,”
Compos. Struct.
,
226
, p.
111232
.
18.
Chen
,
X.
,
Ji
,
Q.
,
Wei
,
J.
,
Tan
,
H.
,
Yu
,
J.
,
Zhang
,
P.
,
Laude
,
V.
, and
Kadic
,
M.
,
2020
, “
Light-Weight Shell-Lattice Metamaterials for Mechanical Shock Absorption
,”
Int. J. Mech. Sci.
,
169
, p.
105288
.
19.
Tan
,
X.
,
Wang
,
B.
,
Yao
,
K.
,
Zhu
,
S.
,
Chen
,
S.
,
Xu
,
P.
,
Wang
,
L.
, and
Sun
,
Y.
,
2019
, “
Novel Multi-S Mechanical Metamaterials for Trapping Energy Through Shear Deformation
,”
Int. J. Mech. Sci.
,
164
, p.
105168
.
20.
Hu
,
J.
,
Yu
,
T. X.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
Low-Speed Impact Mitigation of Recoverable DNA-Inspired Double Helical Metamaterials
,”
Int. J. Mech. Sci.
,
161–162
, p.
105050
.
21.
Oyelade
,
A. O.
,
Sadiq
,
O. M.
,
Ogundalu
,
O. A.
, and
Ojoko
,
N. K.
,
2019
, “
On the Dynamic Properties of Metamaterials in Civil Engineering Structures
,”
IOP. Conf. Ser.: Mater. Sci. Eng.
,
640
, p.
012045
.
22.
Wu
,
L.
,
Geng
,
Q.
, and
Li
,
Y.-M.
,
2020
, “
A Locally Resonant Elastic Metamaterial Based on Coupled Vibration of Internal Liquid and Coating Layer
,”
J. Sound. Vib.
,
468
, p.
115102
.
23.
Xu
,
X.
,
Barnhart
,
M. V.
,
Fang
,
X.
,
Wen
,
J.
,
Chen
,
Y.
, and
Huang
,
G.
,
2019
, “
A Nonlinear Dissipative Elastic Metamaterial for Broadband Wave Mitigation
,”
Int. J. Mech. Sci.
,
164
, p.
105159
.
24.
Wu
,
L.
,
Wang
,
Y.
,
Zhai
,
Z.
,
Yang
,
Y.
,
Krishnaraju
,
D.
,
Lu
,
J.
,
Wu
,
F.
,
Wang
,
Q.
, and
Jiang
,
H.
,
2020
, “
Mechanical Metamaterials for Full-Band Mechanical Wave Shielding
,”
Appl. Mater. Today
,
20
, p.
100671
.
25.
Li
,
Z.
,
Wu
,
L.
,
Zhang
,
H.
,
Li
,
Y.
, and
Lee
,
H. P.
,
2020
, “
Dual-Functional Metamaterial With Vibration Isolation and Heat Flux Guiding
,”
J. Sound. Vib.
,
469
, p.
115122
.
26.
Kumar
,
S.
,
Xiang
,
T. B.
, and
Lee
,
H. P.
,
2020
, “
Ventilated Acoustic Metamaterial Window Panels for Simultaneous Noise Shielding and Air Circulation
,”
Appl. Acoustics
,
159
, p.
107088
.
27.
Wang
,
X.
,
Luo
,
X.
,
Zhao
,
H.
, and
Huang
,
Z.
,
2018
, “
Acoustic Perfect Absorption and Broadband Insulation Achieved by Double-Zero Metamaterials
,”
Appl. Phys. Lett.
,
112
(
2
), p.
021901
.
28.
Liao
,
Y.
,
Zhou
,
X.
,
Chen
,
Y.
, and
Huang
,
G.
,
2018
, “
Adaptive Metamaterials for Broadband Sound Absorption At Low Frequencies
,”
Smart Mater. Struct.
,
28
(
2
), p.
025005
.
29.
Kalamkarov
,
A. L.
,
Andrianov
,
I. V.
, and
Danishevs’kyy
,
V. V.
,
2009
, “
Asymptotic Homogenization of Composite Materials and Structures
,”
ASME Appl. Mech. Rev.
,
62
(
3
), p.
030802
.
30.
Yang
,
H.
,
Abali
,
B. E.
,
Timofeev
,
D.
, and
Müller
,
W. H.
,
2020
, “
Determination of Metamaterial Parameters by Means of a Homogenization Approach Based on Asymptotic Analysis
,”
Contin. Mech. Thermodyn.
,
32
(
5
), pp.
1251
1270
.
31.
Pernas-Salomón
,
R.
, and
Shmuel
,
G.
,
2020
, “
Symmetry Breaking Creates Electro-Momentum Coupling in Piezoelectric Metamaterials
,”
J. Mech. Phys. Solids.
,
134
, p.
103770
.
32.
Eugster
,
S.
, and
Steigmann
,
D.
,
2019
, “
Continuum Theory for Mechanical Metamaterials With a Cubic Lattice Substructure
,”
Math. Mech. Complex Syst.
,
7
(
1
), pp.
75
98
.
33.
Porubov
,
A. V.
, and
Grekova
,
E. F.
,
2020
, “
On Nonlinear Modeling of an Acoustic Metamaterial
,”
Mech. Res. Commun.
,
103
, p.
103464
.
34.
Chen
,
Y.
,
Frenzel
,
T.
,
Guenneau
,
S.
,
Kadic
,
M.
, and
Wegener
,
M.
,
2020
, “
Mapping Acoustical Activity in 3D Chiral Mechanical Metamaterials Onto Micropolar Continuum Elasticity
,”
J. Mech. Phys. Solids.
,
137
, p.
103877
.
35.
Liu
,
X. N.
,
Huang
,
G. L.
, and
Hu
,
G. K.
,
2012
, “
Chiral Effect in Plane Isotropic Micropolar Elasticity and Its Application to Chiral Lattices
,”
J. Mech. Phys. Solids.
,
60
(
11
), pp.
1907
1921
.
36.
Hassanpour
,
S.
, and
Heppler
,
G. R.
,
2017
, “
Micropolar Elasticity Theory: A Survey of Linear Isotropic Equations, Representative Notations, and Experimental Investigations
,”
Math. Mech. Solids
,
22
(
2
), pp.
224
242
.
37.
Cemal Eringen
,
A.
,
1967
, “
Theory of Micropolar Plates
,”
Zeitschrift für angewandte Mathematik und Physik ZAMP
,
18
, pp.
12
30
.
You do not currently have access to this content.