Abstract
The formation of a dipole of edge dislocations inside one grain separated from the adjacent grains by two interfaces in which are lying disclination dipoles (one in each interface) has been theoretically investigated from an energy variation calculation. Critical grain sizes associated with the formation of the edge dislocation dipole have been determined as well as an activation energy. The effects of the inclination angle of the gliding plane of the dislocations and the characteristic parameters of the disclination dipoles have been finally analyzed.
Issue Section:
Research Papers
References
1.
Hall
, E. O.
, 1951
, “The Deformation and Ageing of Mild Steel: III Discussion of Results
,” Proc. Phys. Soc. Sect. B
, 64
(9
), pp. 747
–753
. 2.
Petch
, N. J.
, 1951
, “The Cleavage Strength of Polycrystals
,” J. Iron Steel Inst.
, 174
, pp. 25
–30
.3.
Lim
, H.
, Lee
, M. G.
, Kim
, J. H.
, Adams
, B. L.
, and Wagoner
, R. H.
, 2016
, “Simulation of Polycrystal Deformation With Grain and Grain Boundary Effects
,” Int. J. Plast.
, 81
, pp. 231
–248
. 4.
Eshelby
, J.
, Frank
, F.
, and Nabarro
, F.
, 1951
, “The Equilibrium of Linear Arrays of Dislocations
,” Philos. Mag.
, 42
(127
), pp. 351
–364
. 5.
Voskoboinikov
, R. E.
, Chapman
, S. J.
, Ockendon
, J. R.
, and Allwright
, D. J.
, 2007
, “Continuum and Discrete Models of Dislocation Pile-Ups. I. Pile-Up at a Lock
,” J. Mech. Phys.
, 55
(9
), pp. 2007
–2025
. 6.
Akarapu
, S.
, and Hirth
, J. P.
, 2013
, “Dislocation Pile-Ups in Stress Gradients Revisited
,” Acta Mater.
, 61
, pp. 3621
–3629
. 7.
Scardia
, L.
, Peerlings
, R. H. J.
, Peletier
, M. A.
, and Geers
, M. G. D.
, 2014
, “Mechanics of Dislocation Pile-Ups: A Unification of Scaling Regimes
,” J. Mech. Phys.
, 70
, pp. 42
–61
. 8.
Liu
, W.
, Liu
, Y.
, Sui
, H.
, Chen
, L.
, Yu
, L.
, Yi
, X.
, and Duan
, H.
, 2020
, “Dislocation-Grain Boundary Interaction in Metallic Materials: Competition Between Dislocation Transmission and Dislocation Source Activation
,” J. Mech. Phys.
, 145
, p. 104148
.9.
Lubarda
, V. A.
, 2017
, “A Pileup of Screw Dislocations Against an Inclined Bimetallic Interface
,” Theor. Appl. Mech.
, 44
(2
), pp. 155
–167
. 10.
Lubarda
, V. A.
, 2018
, “A Pileup of Edge Dislocations Against an Inclined Bimetallic Interface
,” Mech. Mater.
, 117
, pp. 32
–40
. 11.
Murayama
, M.
, Howe
, J. M.
, Hidaka
, H.
, and Takaki
, S.
, 2002
, “Atomic-Level Observation of Disclination Dipoles in Mechanically-Milled, Nanocrystalline Fe
,” Science
, 295
(5564
), pp. 2433
–2435
. 12.
Cordier
, P.
, Demouchy
, S.
, Beausir
, B.
, Taupin
, V.
, Barou
, F.
, and Fressengeas
, C.
, 2014
, “Disclinations Provide the Missing Mechanism for Deforming Olivine-Rich Rocks in the Mantle
,” Nature
, 507
, pp. 51
–56
. 13.
Romanov
, A. E.
, and Vladimirov
, V. I.
, 1992
, Disclination in Crystalline Solids
, Vol. 9
, North Holland
, Amsterdam
.14.
Romanov
, A. E.
, and Kolesnikova
, A. L.
, 2009
, “Application of Disclination Concept to Solid Structures
,” Prog. Mater. Sci.
, 54
(6
), pp. 740
–769
. 15.
Nazarov
, A. A.
, 2013
, “Disclinations in Bulk Nanostructured Materials: Their Origin, Relaxation and Role in Materials Properties
,” Adv. Nat. Sci. Nanosci. Nanotechnol.
, 4
, p. 033002
. 16.
Kleman
, M.
, and Friedel
, J.
, 2008
, “Disclinations, Dislocations, and Continuous Defects: A Reappraisal
,” Rev. Mod. Phys.
, 80
(1
), pp. 61
–115
. 17.
Song
, Z.
, and Xu
, Z.
, 2014
, “Topological Defects in Two-Dimensional Crystals: The Stress Buildup and Accumulation
,” ASME J. Appl. Mech.
, 81
(9
), p. 091004
. 18.
Kolesnikova
, A. I.
, and Romanov
, A. E.
, 2004
, “Virtual Circular Dislocation-Disclination Loop Technique in Boundary Value Problems in the Theory of Defects
,” ASME J. Appl. Mech.
, 71
(3
), pp. 409
–417
. 19.
Li
, J. C. M.
, 1972
, “Disclination Model of High Angle Grain Boundary
,” Surf. Sci.
, 31
, pp. 12
–26
. 20.
Nazarov
, A. A.
, Shenderova
, O. A.
, and Brenner
, D. W.
, 2000
, “On the Disclination-Structural Unit Model of Grain Boundaries
,” Mater. Sci. Eng. A
, 281
(1–2), pp. 148
–155
. 21.
Sun
, X. Y.
, Taupin
, V.
, Fressengeas
, C.
, and Cordier
, P.
, 2016
, “Continuous Description of the Atomic Structure of Grain Boundaries Using Dislocation and Generalized-Disclination Density Fields
,” Int. J. Plast.
, 77
, pp. 75
–89
. 22.
Wu
, M. S.
, 2000
, “Exact Solutions for a Wedge Disclination Dipole in a Transversely Isotropic Bimaterial
,” Int. J. Eng. Sci.
, 38
, pp. 1811
–1835
. 23.
Zhou
, K.
, and Wu
, M. S.
, 2010
, “Stress Field of a Disclination Dipole in Hcp Bicrystal With Imperfect Interface
,” Int. J. Eng. Sci.
, 48
, pp. 237
–252
. 24.
Kolesnikova
, A. L.
, Gutkin
, M. Y.
, Proskura
, A. V.
, Morozov
, N. F.
, and Romanov
, A. E.
, 2016
, “Elastic Fields of Straight Wedge Disclinations Axially Piercing Bodies With Spherical Free Surfaces
,” Int. J. Sol. Struct.
, 99
, pp. 82
–96
. 25.
Gutkin
, M. Y.
, and Ovid’ko
, I. A.
, 1994
, “Disclinations, Amorphization and Microcrack Generation at Grain Boundary Junctions in Polycrystalline Solids
,” Philos. Mag. A
, 70
(4
), pp. 561
–575
. 26.
Wu
, M. S.
, 2018
, “Crack Nucleation From a Wedge Disclination Dipole With Shift of Rotation Axes
,” Int. J. Fract.
, 212
, pp. 53
–66
. 27.
Ovid’ko
, I. A.
, and Sheinerman
, A. G.
, 2017
, “Grain Boundary Sliding, Triple Junction Disclinations and Strain Hardening in Ultrafine-Grained and Nanocrystalline Metals
,” Int. J. Plast.
, 96
, pp. 227
–241
. 28.
Bobylev
, S. V.
, and Ovid’ko
, I. A.
, 2017
, “Stress-Driven Migration, Convergence and Splitting Transformations of Grain Boundaries in Nanomaterials
,” Acta Mater.
, 124
, pp. 333
–342
. 29.
Bobylev
, S. V.
, Morozov
, N. F.
, and Ovid’ko
, I. A.
, 2010
, “Cooperative Grain Boundary Sliding and Migration Process in Nanocrystalline Solids
,” Phys. Rev. Lett.
, 105
, p. 055504
. 30.
Bobylev
, S. V.
, and Ovid’ko
, I. A.
, 2012
, “Grain Boundary Rotations in Solids
,” Phys. Rev. Lett.
, 109
, p. 175501
. 31.
Thomas
, S. L.
, King
, A. H.
, and Srolovitz
, D. J.
, 2016
, “When Twins Collide: Twin Junctions in Nanocrystalline Nickel
,” Acta Mater.
, 113
, pp. 301
–310
. 32.
Fedorov
, A. A.
, Gutkin
, M. Y.
, and Ovid’ko
, I. A.
, 2003
, “Transformation of Grain Boundary Dislocation Pile-Ups in Nano- and Polycrystalline Materials
,” Acta Mater.
, 51
(4
), pp. 887
–898
. 33.
Gutkin
, M. Y.
, Ovid’ko
, I. A.
, and Skiba
, N. V.
, 2003
, “Transformations of Grains Boundaries Due to Disclination Motion and Emission of Dislocation Pairs
,” Mater. Sci. Eng. A
, 339
(1–2
), pp. 73
–80
. 34.
Colin
, J.
, 2019
, “Dislocation Formation From a Polycrystal Free-Surface
,” J. Appl. Mech. (Brief Rep.)
, 86
(1
), p. 014501
. 35.
Hirth
, J. P.
, and Lothe
, J.
, 1982
, Theory of Dislocations
, 2nd ed., John Wiley Sons
, New York
.36.
Timoshenko
, S.
, and Goodier
, J. N.
, 1952
, Theory of Elasticity
, Mc Graw-Hill Book Company Inc
, New York
.37.
Grilhé
, J.
, 1993
, “Study of Roughness Formation Induced by Homogeneous Stress at the Free Surfaces of Solids
,” Acta Metall. Mater.
, 41
(3
), pp. 909
–913
. Copyright © 2021 by ASME
You do not currently have access to this content.