Abstract

Motivated by the need to evaluate the seismic response of large-capacity gravity energy storage systems (potential energy batteries) such as the proposed frictional Multiblock Tower Structures (MTS) recently discussed by Andrade et al. (2021, “Seismic Performance Assessment of Multiblock Tower Structures As Gravity Energy Storage Systems,” ASME J. Appl. Mech., Submitted), we apply Buckingham’s Pi theorem (Buckingham, E., 1914, “On Physically Similar Systems; Illustrations of the Use of Dimensional Equations,” Phys. Rev., 4, pp. 345–376) to identify the most general forms of dimensionless numbers and dynamic similitude laws appropriate for scaling discontinuous multiblock structural systems involving general restoring forces resisting inertial loading. We begin by introducing the dimensionless “mu-number” (μN) appropriate for both gravitational and frictional restoring forces and then generalize by introducing the “arbitrary restoring force number” (RFN). RFN is subsequently employed to study similitude in various types of discontinuous or discrete systems featuring frictional, gravitational, cohesive, elastic, and mixed restoring forces acting at the block interfaces. In the process, we explore the additional consequences of inter and intra-block elasticity on scaling. We also formulate a model describing the mechanism of structural signal transmission for the case of rigid MTS featuring inter-block restoring forces composed of elastic springs and interfacial friction, introducing the concept of “structural speed.” Finally, we validate our results by demonstrating that dynamic time-histories of field quantities and structural speeds between MTS models at various scales are governed by our proposed similitude laws, thus demonstrating the consistency of our approach.

References

1.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(
4
), pp.
345
376
.
2.
Rayleigh
,
L.
,
1915
, “
The Principal of Similitude
,”
Nature
,
95
(
2368
), pp.
66
68
.
3.
von Kármán
,
T.
, and
Lin
,
C. C.
,
1949
, “
On the Concept of Similiarity in the Theory of Isotropic Turbulence
,”
Rev. Mod. Phys.
,
21
(
3
), pp.
516
519
.
4.
Barenblatt
,
G. I.
,
1996
,
Scaling, Self-Similarity, and Intermediate Asymptotics
(
Cambridge Texts in Applied Mathematics
),
Cambridge University Press
,
Cambridge
.
5.
Bažant
,
Z. P.
, and
Kazemi
,
M. T.
,
1990
, “
Determination of Fracture Energy, Process Zone Length and Brittleness Number From Size Effect, With Application to Rock and Concrete
,”
Int. J. Fracture
,
44
(
2
), pp.
111
131
.
6.
Bažant
,
Z. P.
,
1976
, Instability, “
Ductility, and Size Effect in Strain-Softening Concrete
,”
J. Eng. Mech. Div.
,
102
(
2
), pp.
331
344
.
7.
Harris
,
G. H.
, and
Sabnis
,
M.
,
1999
,
Structural Modeling and Experimental Techniques
, 2nd ed.,
CRC Press
,
Boca Raton
.
8.
Moncarz
,
P. D.
, and
Krawinkler
,
H.
,
1981
, “
Theory and Application of Experimental Model Analysis in Earthquake Engineering, The John A. Blume Earthquake Engineering Center
,” Department of Civil Engineering, Stanford University, SAE Technical Paper 50.
9.
Thune
,
N. A.
,
2005
, Kheops Pyramid, Cairo, Egypt, https://upload.wikimedia.org/wikipedia/commons/e/e3/Kheops-Pyramid.jpg
10.
Storeye
,
2007
, The Temple of Hephaistos in Athens, Athens, Greece, https://upload.wikimedia.org/wikipedia/commons/0/0c/Hephaistos_Temple.JPG
11.
Lu
,
J.
,
Zhang
,
Y.
, and
Yao
,
Q.
,
2008
, “Analysis of Seismic Disaster of Masonry Pagodas,”
Geotechnical Engineering for Disaster Mitigation and Rehabilitation
,
Liu
,
H.
,
Deng
,
A.
, and
Chu
,
J.
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
, pp.
381
386
.
12.
Tong
,
D. Y.
,
2012
, Burj Khalifa, Dubai, United Arab Emirates, https://upload.wikimedia.org/wikipedia/en/9/93/Burj_Khalifa.jpg
13.
Housner
,
G. W.
,
1963
, “
The Behavior of Inverted Pendulum Structures During Earthquakes
,”
Seismol. Soc. Am.
,
53
(
2
), pp.
403
417
.
14.
Spanos
,
P. D.
, and
Koh
,
A.
,
1984
, “
Rocking of Rigid Blocks Due to Harmonic Shaking
,”
J. Eng. Mech.
,
110
(
11
), pp.
1627
1642
.
15.
Shenton III
,
H. W.
, and
Jones
,
N. P.
,
1991
, “
Base Excitation of Rigid Bodies. I: Formulation
,”
J. Eng. Mech.
,
117
(
10
), pp.
2286
2306
.
16.
Shenton III
,
H. W.
, and
Jones
,
N. P.
,
1991
, “
Base Excitation of Rigid Bodies. II: Periodic Slide-Rock Response
,”
J. Eng. Mech.
,
117
(
10
), pp.
2307
2328
.
17.
Ulm
,
F.
, and
Piau
,
J. M.
,
1993
, “
Fall of a Temple: Theory of Contact Applied to Masonry Joints
,”
J. Struct. Eng.
,
119
(
3
), pp.
687
697
.
18.
Shenton III
,
H. W.
,
1996
, “
Criteria for Initiation of Slide, Rock, and Slide-Rock Rigid-Body Modes
,”
J. Eng. Mech.
,
122
(
7
), pp.
690
693
.
19.
Dimitrakopoulos
,
E. G.
, and
DeJong
,
M. J.
,
2012
, “
Revisiting the Rocking Block: Closed-Form Solutions and Similarity Laws
,”
Proc. R. Soc. A
,
468
(
2144
), pp.
2294
2318
.
20.
Makris
,
N.
,
2014
, “
A Half-Century of Rocking Isolation
,”
Earthq. Struct.
,
7
(
6
), pp.
1187
1221
.
21.
Kounadis
,
A. N.
,
2018
, “
The Effect of Sliding on the Rocking Instability of Multi-Rigid Block Assemblies Under Ground Motion
,”
Soil Dyn. Earthq. Eng.
,
104
, pp.
1
14
.
22.
Kounadis
,
A. N.
,
2019
, “
Seismic Instability of Free-Standing Statues Atop Multispondyle Columns: A Heuristic Very Stable System of Ancient Technology
,”
Soil Dyn. Earthq. Eng.
,
119
, pp.
253
264
.
23.
Konstantinidis
,
D.
, and
Makris
,
N.
,
2005
, “
Seismic Response Analysis of Multidrum Classical Columns
,”
Earthq. Eng. Struct. Dyn.
,
34
(
10
), pp.
1243
1270
.
24.
Korres
,
M.
,
1996
, “
Seismic Damage to the Monuments of the Athenian Acropolis
,”
Archaeoseismology
, S. Stiros and R. Jones, eds., Fitch Laboratory Occasional Paper 7, Institute of Geology & Mineral Exploration & The British School at Athens, Athens, Greece, pp.
69
74
.
25.
Stiros
,
S. C.
,
2020
, “
Monumental Articulated Ancient Greek and Roman Columns and Temples and Earthquakes: Archaeological, Historical, and Engineering Approaches
,”
J. Seismol.
,
24
(
4
), pp.
853
881
.
26.
Galanopoulos
,
A.
,
1956
, “
The Seismic Risk At Athens, Praktika Akadimias Athenon
,”
Proc. Acad. Athens)
,
31
, pp.
464
472
. In Greek.
27.
Business Wire, Inc.
,
2019
, Energy Vault Closes Series B Funding with $110 Million Investment from Softbank Vision Fund, https://www.businesswire.com/news/home/20190814005008/en/Energy-Vault-Closes-Series-B-Funding-With-110-Million-Investment-From-Softbank-Vision-Fund
28.
Andrade
,
J. E.
,
Rosakis
,
A. J.
,
Conte
,
J. P.
,
Restrepo
,
J. I.
,
Gabuchian
,
V.
,
Harmon
,
J. M.
,
Rodriguez
,
A.
,
Nema
,
A.
, and
Pedretti
,
A. R.
,
2021
, “
Seismic Performance Assessment of Multiblock Tower Structures As Gravity Energy Storage Systems
,”
ASME J. Appl. Mech.
, Submitted.
29.
Gabuchian
,
V.
,
Rosakis
,
A. J.
,
Andrade
,
J. E.
,
Harmon
,
J. M.
,
Restrepo
,
J. I.
,
Conte
,
J. P.
,
Rodriguez
,
A.
,
Nema
,
A.
, and
Pedretti
,
A. R.
,
2021
, “
Multiscale Experiments for Seismic Performance Assessment of Multiblock Tower Structures for Energy Storage: 1/107 Scale
,”
Earthq. Eng. Struct. Dyn.
30.
Restrepo
,
J. I.
,
Conte
,
J. P.
,
Rodriguez
,
A.
,
Gabuchian
,
V.
,
Nema
,
A.
,
Andrade
,
J. E.
,
Rosakis
,
A. J.
, and
Pedretti
,
A. R.
,
2021
, “
Multiscale Experiments for Seismic Performance Assessment of Multiblock Tower Structures for Energy Storage: 1/25 Scale
,”
Earthq. Eng. Struct. Dyn.
31.
Harmon
,
J. M.
,
Andrade
,
J. E.
,
Rosakis
,
A. J.
,
Gabuchian
,
V.
,
Restrepo
,
J. I.
,
Conte
,
J. P.
,
Rodriguez
,
A.
,
Nema
,
A.
, and
Pedretti
,
A. R.
,
2021
, “
Using the Level Set Discrete Element Method for Predicting the Seismic Performance of Frictional Structures at Multiple Scales
,”
Comput. Method Appl. M.
,
20
.
32.
Kawamoto
,
R.
,
Andò
,
E.
,
Viggiani
,
G.
, and
Andrade
,
J. E.
,
2016
, “
Level Set Discrete Element Method for Three-Dimensional Computations with Triaxial Case Study
,”
J. Mech. Phys. Solids
,
91
, pp.
1
13
.
33.
Sutton
,
M.
,
Orteu
,
J.
, and
Schreier
,
H.
,
2009
,
Image Correlation for Shape, Motion, and Deformation Measurements
, 1st ed.,
Springer US
.
You do not currently have access to this content.