Abstract

The Kresling truss structure, derived from Kresling origami, has been widely studied for its bi-stability and various other properties that are useful for diverse engineering applications. The stable states of Kresling trusses are governed by their geometry and elastic response, which involves a limited design space that has been well explored in previous studies. In this work, we present a magneto-Kresling truss design that involves embedding nodal magnets in the structure, which results in a more complex energy landscape, and consequently, greater tunability under mechanical deformation. We explore this energy landscape first along the zero-torque folding path and then release the restraint on the path to explore the complete two-degree-of-freedom behavior for various structural geometries and magnet strengths. We show that the magnetic interaction could alter the potential energy landscape by either changing the stable configuration, adjusting the energy well depth, or both. Energy wells with different minima endow this magneto-elastic structure with an outstanding energy storage capacity. More interestingly, proper design of the magneto-Kresling truss system yields a tri-stable structure, which is not possible in the absence of magnets. We also demonstrate various loading paths that can induce desired conformational changes of the structure. The proposed magneto-Kresling truss design sets the stage for fabricating tunable, scalable magneto-elastic multi-stable systems that can be easily utilized for applications in energy harvesting, storage, vibration control, as well as active structures with shape-shifting capability.

References

1.
Turner
,
N.
,
Goodwine
,
B.
, and
Sen
,
M.
,
2016
, “
A Review of Origami Applications in Mechanical Engineering
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
14
), pp.
2345
2362
.
2.
Miyashita
,
S.
,
Guitron
,
S.
,
Yoshida
,
K.
,
Shuguang
,
L.
,
Damian
,
D. D.
, and
Rus
,
D.
,
2016
, “
Ingestible, Controllable, and Degradable Origami Robot for Patching Stomach Wounds
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
909
916
.
3.
Sargent
,
B.
,
Butler
,
J.
,
Seymour
,
K.
,
Bailey
,
D.
,
Jensen
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041005
.
4.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assist. Radiol. Surg.
,
12
(
11
), pp.
2023
2032
.
5.
Seymour
,
K.
,
Burrow
,
D.
,
Avila
,
A.
,
Bateman
,
T.
,
Morgan
,
D. C.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Origami-Based Deployable Ballistic Barrier
,”
Origami7: Seventh International Meeting of Origami Science, Mathematics, and Education
,
R.
Lang
,
M.
Bolitho
, and
Z.
You
, eds., Vol.
3
,
Tarquin
,
St. Albans
, pp.
763
777
.
6.
Morgan
,
J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
7.
Pehrson
,
N. A.
,
Ames
,
D. C.
,
Smith
,
S. P.
,
Magleby
,
S. P.
, and
Arya
,
M.
,
2020
, “
Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,”
AIAA J.
,
58
(
7
), pp.
3221
3228
.
8.
Wu
,
R.
,
Roberts
,
P. C. E.
,
Soutis
,
C.
, and
Diver
,
C.
,
2018
, “
Heliogyro Solar Sail With Self-Regulated Centrifugal Deployment Enabled by an Origami-Inspired Morphing Reflector
,”
Acta Astronaut.
,
152
, pp.
242
253
.
9.
Yasuda
,
H.
,
Miyazawa
,
Y.
,
Charalampidis
,
E. G.
,
Chong
,
C.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2019
, “
Origami-Based Impact Mitigation Via Rarefaction Solitary Wave Creation
,”
Sci. Adv.
,
5
(
5
), pp.
eaau2835
eaau2835
.
10.
Yasuda
,
H.
, and
Yang
,
J.
,
2017
, “
Tunable Frequency Band Structure of Origami-Based Mechanical Metamaterials
,”
J. Int. Assoc. Shell Spatial Struct.
,
58
(
4
), pp.
287
294
.
11.
Wu
,
Y.
,
Chaunsali
,
R.
,
Yasuda
,
H.
,
Yu
,
K.
, and
Yang
,
J.
,
2018
, “
Dial-In Topological Metamaterials Based on Bistable Stewart Platform
,”
Sci. Rep.
,
8
(
1
), pp.
112
112
.
12.
Hang
,
Y.
, and
Li
,
M.
,
2019
, “
Multi-Stable Mechanical Metamaterials by Elastic Buckling Instability
,”
J. Mater. Sci.
,
54
(
4
), pp.
3509
3526
.
13.
He
,
C.
,
Lai
,
H.-S.
,
He
,
B.
,
Yu
,
S.-Y.
,
Xu
,
X.
,
Lu
,
M.-H.
, and
Chen
,
Y.-F.
,
2020
, “
Acoustic Analogues of Three-Dimensional Topological Insulators
,”
Nat. Commun.
,
11
(
1
), pp.
2318
2318
.
14.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
e1805282
.
15.
Boatti
,
E.
,
Vasios
,
N.
, and
Bertoldi
,
K.
,
2017
, “
Origami Metamaterials for Tunable Thermal Expansion
,”
Adv. Mater.
,
29
(
26
), pp.
1700360
.
16.
Yasuda
,
H.
, and
Yang
,
J.
,
2015
, “
Reentrant Origami-Based Metamaterials With Negative Poisson’s Ratio and Bistability
,”
Phys. Rev. Lett.
,
114
(
18
), pp.
185502
185502
.
17.
Kochmann
,
D. M.
, and
Bertoldi
,
K.
,
2017
, “
Exploiting Microstructural Instabilities in Solids and Structures: From Metamaterials to Structural Transitions
,”
ASME Appl. Mech. Rev.
,
69
(
5
), p.
050801
.
18.
Leelavanichkul
,
S.
,
Cherkaev
,
A.
,
Adams
,
D. O.
, and
Solzbacher
,
F.
,
2010
, “
Energy Absorption of a Helicoidal Bistable Structure
,”
J. Mech. Mater. Struct.
,
5
(
2
), pp.
305
321
.
19.
Shan
,
S.
,
Kang
,
S. H.
,
Raney
,
J. R.
,
Wang
,
P.
,
Fang
,
L.
,
Candido
,
F.
,
Lewis
,
J. A.
, and
Bertoldi
,
K.
,
2015
, “
Multistable Architected Materials for Trapping Elastic Strain Energy
,”
Adv. Mater.
,
27
(
29
), pp.
4296
4301
.
20.
Xiang
,
X. M.
,
Lu
,
G.
, and
You
,
Z.
,
2020
, “
Energy Absorption of Origami Inspired Structures and Materials
,”
Thin Walled Struct.
,
157
, p.
107130
.
21.
Harne
,
R. L.
,
Thota
,
M.
, and
Wang
,
K. W.
,
2013
, “
Concise and High-Fidelity Predictive Criteria for Maximizing Performance and Robustness of Bistable Energy Harvesters
,”
Appl. Phys. Lett.
,
102
(
5
), p.
053903
.
22.
Hwang
,
M.
, and
Arrieta
,
A. F.
,
2018
, “
Input-Independent Energy Harvesting in Bistable Lattices From Transition Waves
,”
Sci. Rep.
,
8
(
1
), pp.
3630
3639
.
23.
Kim
,
J.
,
Dorin
,
P.
, and
Wang
,
K. W.
,
2020
, “
Vibration Energy Harvesting Enhancement Exploiting Magnetically Coupled Bistable and Linear Harvesters
,”
Smart Mater. Struct.
,
29
(
6
), p.
65006
.
24.
Wang
,
P.
,
Shim
,
J.
, and
Bertoldi
,
K.
,
2013
, “
Effects of Geometric and Material Nonlinearities on Tunable Band Gaps and Low-Frequency Directionality of Phononic Crystals
,”
Phys. Rev. B: Condens. Matter
,
88
(
1
), p.
014304
.
25.
Johnson
,
D. R.
,
Harne
,
R. L.
, and
Wang
,
K. W.
,
2014
, “
A Disturbance Cancellation Perspective on Vibration Control Using a Bistable Snap-Through Attachment
,”
ASME J. Vib. Acoust.
,
136
(
3
), p.
031006
.
26.
Zhang
,
M.
,
Yang
,
J.
, and
Zhu
,
R.
,
2021
, “
Origami-Based Bistable Metastructures for Low-Frequency Vibration Control
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051009
.
27.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics for Vibration Control, Energy Harvesting and Sensing
,
John Wiley and Sons
,
Hoboken, NJ
.
28.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031015
.
29.
Yasuda
,
H.
,
Tachi
,
T.
,
Lee
,
M.
, and
Yang
,
J.
,
2017
, “
Origami-Based Tunable Truss Structures for Non-Volatile Mechanical Memory Operation
,”
Nat. Commun.
,
8
(
1
), pp.
962
962
.
30.
Masana
,
R.
,
Khazaaleh
,
S.
,
Alhussein
,
H.
,
Crespo
,
R. S.
, and
Daqaq
,
M. F.
,
2020
, “
An Origami-Inspired Dynamically Actuated Binary Switch
,”
Appl. Phys. Lett.
,
117
(
8
), p.
81901
.
31.
Jianguo
,
C.
,
Xiaowei
,
D.
,
Ya
,
Z.
,
Jian
,
F.
, and
Yongming
,
T.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
.
32.
Li
,
M.
,
Zhang
,
J. Z. H.
, and
Xia
,
F.
,
2016
, “
A New Algorithm for Construction of Coarse-Grained Sites of Large Biomolecules
,”
J. Comput. Chem.
,
37
(
9
), pp.
795
804
.
33.
Tlusty
,
T.
,
Libchaber
,
A.
, and
Eckmann
,
J.-P.
,
2017
, “
Physical Model of the Genotype-to-Phenotype Map of Proteins
,”
Phys. Rev. X
,
7
(
2
), p.
021037
.
34.
Rocks
,
J. W.
,
Pashine
,
N.
,
Bischofberger
,
I.
,
Goodrich
,
C. P.
,
Liu
,
A. J.
, and
Nagel
,
S. R.
,
2017
, “
Designing Allostery-Inspired Response in Mechanical Networks
,”
Proc. Natl. Acad. Sci. USA
,
114
(
10
), p.
2520
2525
.
35.
Zhang
,
Q.
,
Wang
,
X.
,
Cai
,
J.
, and
Feng
,
J.
,
2021
, “
Motion Paths and Mechanical Behavior of Origami-Inspired Tunable Structures
,”
Mater. Today Commun.
,
26
, p.
101872
.
36.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2019
, “
Equilibria and Bifurcations of a Foldable Paper-Based Spring Inspired by Kresling-Pattern Origami
,”
Phys. Rev. E
,
100
(
6-1
), p.
063001
.
37.
Farshad
,
M.
, and
Benine
,
A.
,
2004
, “
Magnetoactive Elastomer Composites
,”
Polym. Test.
,
23
(
3
), pp.
347
353
.
38.
Bira
,
N.
,
Dhagat
,
P.
, and
Davidson
,
J. R.
,
2020
, “
A Review of Magnetic Elastomers and Their Role in Soft Robotics
,”
Front. Rob. AI
,
7
, pp.
588391
588391
.
39.
Kavlicoglu
,
B.
,
Wallis
,
B.
,
Sahin
,
H.
, and
Liu
,
Y.
,
2011
, “
Magnetorheological Elastomer Mount for Shock and Vibration Isolation
,”
SPIE Smart Structures and Materials: Active and Passive Smart Structures and Integrated Systems
,
San Diego, CA
,
Apr. 27
, Vol.
7977
, p.
79770Y
.
40.
John
,
G.
,
Schlotter
,
W.
, and
Nichols
,
M.
,
2001
, “
Magnetorheological Elastomers in Tunable Vibration Absorbers
,”
SPIE Smart Structures and Materials: Damping and Isolation
,
Newport Beach, CA
,
July 2
, Vol.
4331
, pp.
103
110
.
41.
Harne
,
R. L.
,
Deng
,
Z.
, and
Dapino
,
M. J.
,
2018
, “
Adaptive Magnetoelastic Metamaterials: A New Class of Magnetorheological Elastomers
,”
J. Intell. Mater. Syst. Struct.
,
29
(
2
), pp.
265
278
.
42.
Leng
,
D.
,
Wu
,
T.
,
Liu
,
G.
,
Wang
,
X.
, and
Sun
,
L.
,
2018
, “
Tunable Isolator Based on Magnetorheological Elastomer in Coupling Shear–Squeeze Mixed Mode
,”
J. Intell. Mater. Syst. Struct.
,
29
(
10
), pp.
2236
2248
.
43.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Transforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
.
44.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), p.
eaax7329
.
45.
Hellebrekers
,
T.
,
Chang
,
N.
,
Chin
,
K.
,
Ford
,
M.
,
Kroemer
,
O.
, and
Majidi
,
C.
,
2020
, “
Soft Magnetic Tactile Skin for Continuous Force and Location Estimation Using Neural Networks
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
1
1
.
46.
Ijaz
,
S.
,
Li
,
H.
,
Hoang
,
M. C.
,
Kim
,
C.-S.
,
Bang
,
D.
,
Choi
,
E.
, and
Park
,
J.-O.
,
2020
, “
Magnetically Actuated Miniature Walking Soft Robot Based on Chained Magnetic Microparticles-Embedded Elastomer
,”
Sens. Actuators A
,
301
, p.
111707
.
47.
Novelino
,
L. S.
,
Ze
,
Q.
,
Wu
,
S.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2020
, “
Untethered Control of Functional Origami Microrobots With Distributed Actuation
,”
Proc. Natl. Acad. Sci. USA
,
117
(
39
), pp.
24096
24101
.
48.
Schaeffer
,
M.
, and
Ruzzene
,
M.
,
2015
, “
Wave Propagation in Reconfigurable Magneto-Elastic Kagome Lattice Structures
,”
J. Appl. Phys.
,
117
(
19
), p.
194903
.
49.
Chen
,
T.
,
Zhang
,
X.
,
Yan
,
X.
,
Zhang
,
B.
,
Jiang
,
J.
,
Huang
,
D.
,
Qi
,
M.
, and
Sun
,
R.
,
2019
, “
Harnessing Magnets to Design Tunable Architected Bistable Material
,”
Adv. Eng. Mater.
,
21
(
3
), pp.
1801255
.
50.
Guell Izard
,
A.
, and
Valdevit
,
L.
,
2020
, “
Magnetoelastic Metamaterials for Energy Dissipation and Wave Filtering
,”
Adv. Eng. Mater.
,
22
(
2
), pp.
1901019
.
51.
Keten
,
S.
,
Xu
,
Z.
,
Ihle
,
B.
, and
Buehler
,
M. J.
,
2010
, “
Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of β-Sheet Crystals in Silk
,”
Nat. Mater.
,
9
(
4
), pp.
359
367
.
52.
DeBenedictis
,
E. P.
, and
Keten
,
S.
,
2019
, “
Mechanical Unfolding of Alpha- and Beta-Helical Protein Motifs
,”
Soft Matter
,
15
(
6
), pp.
1243
1252
.
53.
Fang
,
H.
,
Chang
,
T.-S.
, and
Wang
,
K. W.
,
2020
, “
Magneto-Origami Structures: Engineering Multi-Stability and Dynamics Via Magnetic-Elastic Coupling
,”
Smart Mater. Struct.
,
29
(
1
), p.
015026
.
54.
Livesley
,
R. K.
,
1975
,
Matrix Methods of Structural Analysis
,
Pergamon Press
,
Oxford
.
55.
Kidambi
,
N.
, and
Wang
,
K. W.
,
2020
, “
Dynamics of Kresling Origami Deployment
,”
Phys. Rev. E
,
101
(
6
), pp.
063003
063003
.
56.
Lehner
,
G.
,
2010
,
Electromagnetic Field Theory for Engineers and Physicists
,
Springer
,
Berlin
.
57.
Furlani
,
E. P.
,
2001
,
Permanent Magnet and Electromechanical Devices
,
Academic Press
,
San Diego, CA
.
58.
Beleggia
,
M.
,
Tandon
,
S.
,
Zhu
,
Y.
, and
De Graef
,
M.
,
2004
, “
On the Magnetostatic Interactions Between Nanoparticles of Arbitrary Shape
,”
J. Magn. Magn. Mater.
,
278
(
1–2
), pp.
270
284
.
59.
Vokoun
,
D.
,
Beleggia
,
M.
,
Heller
,
L.
, and
Šittner
,
P.
,
2009
, “
Magnetostatic Interactions and Forces Between Cylindrical Permanent Magnets
,”
J. Magn. Magn. Mater.
,
321
(
22
), pp.
3758
3763
.
60.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Jarrod Millman
,
K.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
İ.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
, and
van Mulbregt
,
P.
, and
SciPy 1.0 Contributors
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.
61.
Azulay
,
H.
,
Lutaty
,
A.
, and
Qvit
,
N.
,
2020
, “
Approach for Comparing Protein Structures and Origami Models
,”
Biochim. Biophys. Acta Biomembr.
,
1862
(
2
), pp.
183132
183132
.
62.
Hiromi
,
Y.
,
Koshiro
,
Y.
,
Yasuhiro
,
M.
,
Richard
,
W.
,
Raney Jordan
,
R.
, and
Jinkyu
,
Y.
,
2020
, “
Data-Driven Prediction and Analysis of Chaotic Origami Dynamics
,”
Commun. Phys.
,
3
(
1
), pp.
1
8
.
63.
Kidambi
,
N.
, and
Wang
,
K. W.
,
2019
, “
On the Deployment of Multistable Kresling Origami-Inspired Structures
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 5B: 43rd Mechanisms and Robotics Conference
,
Anaheim, CA
,
Aug. 18–21
,
ASME
, p.
V05BT07A030
.
You do not currently have access to this content.