Abstract

Different from the system of a single-layer elastic film on a rigid substrate, the debonding interface is difficult to determine in a bilayer or multilayer film-substrate system. A peeling model of a bilayer elastic film on a rigid substrate is established in the present paper, in order to predict which interface debonding occurs first. The interfacial competitive debonding mechanism is theoretically analyzed with the help of the beam bending theory. A criterion of which interface debonding occurs first is proposed. It is found that the interfacial debonding path is mainly controlled by five dimensionless parameters, i.e., the strength ratio and the critical separation distance ratio of the upper and lower interfaces, the Young's modulus ratio and the thickness ratio of the upper and lower films, and the possible initial cantilever length for ease of loading. The corresponding competitive debonding map is well obtained. From the map, which interface debonding occurs first can be easily predicted. It is interesting to find that the interfacial debonding path can be well tuned by any one of the five parameters. The results of the finite element calculation further confirm the theoretical predictions. The present work can not only provide a theoretical method to determine the interfacial debonding path but also be helpful for the optimal design of multilayer film-substrate systems in practical applications.

References

1.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.
2.
Li
,
X. N.
,
Liang
,
L. H.
,
Xie
,
J. J.
,
Chen
,
L.
, and
Wei
,
Y. G.
,
2014
, “
Thickness-Dependent Fracture Characteristics of Ceramic Coatings Bonded on the Alloy Substrates
,”
Surf. Coat. Technol.
,
258
, pp.
1039
1047
.
3.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
4.
Ho
,
P. S.
,
Wang
,
G.
,
Ding
,
M.
,
Zhao
,
J. H.
, and
Dai
,
X.
,
2004
, “
Reliability Issues for Flip-Chip Packages
,”
Microelectron. Reliab.
,
44
(
5
), pp.
719
737
.
5.
Liu
,
X. H.
,
Lane
,
M. W.
,
Shaw
,
T. M.
, and
Simonyi
,
E.
,
2007
, “
Delamination in Patterned Films
,”
Int. J. Solids Struct.
,
44
(
6
), pp.
1706
1718
.
6.
Peng
,
Z. L.
,
Chen
,
S. H.
, and
Soh
,
A. K.
,
2010
, “
Peeling Behavior of a Bio-Inspired Nano-Film on a Substrate
,”
Int. J. Solids Struct.
,
47
(
14
), pp.
1952
1960
.
7.
Tian
,
Y.
,
Pesika
,
N.
,
Zeng
,
H.
,
Rosenberg
,
K.
,
Zhao
,
B.
,
McGuiggan
,
P.
,
Autumn
,
K.
, and
Israelachvili
,
J.
,
2006
, “
Adhesion and Friction in Gecko Toe Attachment and Detachment
,”
Proc. Natl. Acad. Sci. U. S. A.
,
103
(
51
), pp.
19320
19325
.
8.
Rivlin
,
R. S.
,
1944
, “
The Effective Work of Adhesion
,”
Paint Technology
, IX, p.
106
.
9.
Kendall
,
K.
,
1975
, “
Thin-Film Peeling: The Elastic Term
,”
J. Phys. D: Appl. Phys.
,
8
(
13
), pp.
1449
1452
.
10.
Peng
,
Z. L.
,
Wang
,
C.
,
Chen
,
L.
, and
Chen
,
S. H.
,
2014
, “
Peeling Behavior of a Viscoelastic Thin-Film on a Rigid Substrate
,”
Int. J. Solids Struct.
,
51
(
25–26
), pp.
4596
4603
.
11.
Brely
,
L.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2018
, “
The Influence of Substrate Roughness, Patterning, Curvature, and Compliance in Peeling Problems
,”
Biolinspir. Biomim.
,
13
(
2
), p.
026004
.
12.
Peng
,
Z.
,
Wang
,
C.
,
Yang
,
Y.
, and
Chen
,
S.
,
2016
, “
Effect of Relative Humidity on the Peeling Behavior of a Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
94
(
3
), p.
032801
.
13.
Chen
,
B.
,
Wu
,
P. D.
, and
Gao
,
H. J.
,
2009
, “
Pre-Tension Generates Strongly Reversible Adhesion of a Spatula Pad on Substrate
,” J. R. Soc., Interface,
6
(
35
), pp.
529
537
.
14.
Begley
,
M. R.
,
Collino
,
R. R.
,
Israelachvili
,
J. N.
, and
McMeeking
,
R. M.
,
2013
, “
Peeling of a Tape With Large Deformations and Frictional Sliding
,”
J. Mech. Phys. Solids
,
61
(
5
), pp.
1265
1279
.
15.
He
,
L.
,
Lou
,
J.
,
Kitipornchai
,
S.
,
Yang
,
J.
, and
Du
,
J.
,
2019
, “
Peeling Mechanics of Hyperelastic Beams: Bending Effect
,”
Int. J. Solids Struct.
,
167
, pp.
184
191
.
16.
Kinloch
,
A. J.
,
Lau
,
C. C.
, and
Williams
,
J. G.
,
1994
, “
The Peeling of Flexible Laminates
,”
Int. J. Fract.
,
66
(
1
), pp.
45
70
.
17.
Kim
,
K. S.
, and
Aravas
,
N.
,
1988
, “
Elastoplastic Analysis of the Peel Test
,”
Int. J. Solids Struct.
,
24
(
4
), pp.
417
435
.
18.
Loukis
,
M. J.
, and
Aravas
,
N.
,
1991
, “
The Effects of Viscoelasticity in the Peeling of Polymeric Films
,”
J. Adhes.
,
35
(
1
), pp.
7
22
.
19.
Chen
,
H.
,
Feng
,
X.
,
Huang
,
Y.
,
Huang
,
Y. G.
, and
Rogers
,
J. A.
,
2013
, “
Experiments and Viscoelastic Analysis of Peel Test With Patterned Strips for Applications to Transfer Printing
,”
J. Mech. Phys. Solids
,
61
(
8
), pp.
1737
1752
.
20.
Xia
,
S. M.
,
Ponson
,
L.
,
Ravichandran
,
G.
, and
Bhattacharya
,
K.
,
2013
, “
Adhesion of Heterogeneous Thin Films-I: Elastic Heterogeneity
,”
J. Mech. Phys. Solids
,
61
(
3
), pp.
838
851
.
21.
Xu
,
Y. J.
,
Singh
,
Y.
,
Pan
,
C. L.
, and
Subbarayan
,
G.
,
2019
, “
Adhesive Toughness and Instability in Bonded Heterogeneous Films
,”
Int. J. Solids Struct.
,
169
, pp.
41
54
.
22.
Heepe
,
L.
,
Raguseo
,
S.
, and
Gorb
,
S. N.
,
2017
, “
An Experimental Study of Double-Peeling Mechanism Inspired by Biological Adhesive Systems
,”
Appl. Phys. A: Mater. Sci. Process.
,
123
(
2
), p.
124
.
23.
Pugno
,
N. M.
,
2011
, “
The Theory of Multiple Peeling
,”
Int. J. Fract.
,
171
(
2
), pp.
185
193
.
24.
Menga
,
N.
,
Afferrante
,
L.
,
Pugno
,
N. M.
, and
Carbone
,
G.
,
2018
, “
The Multiple V-Shaped Double Peeling of Elastic Thin Films From Elastic Soft Substrates
,”
J. Mech. Phys. Solids
,
113
, pp.
56
64
.
25.
Bosia
,
F.
,
Colella
,
S.
,
Mattoli
,
V.
,
Mazzolai
,
B.
, and
Pugno
,
N. M.
,
2014
, “
Hierarchical Multiple Peeling Simulations
,”
RSC Adv.
,
4
(
48
), pp.
25447
25452
.
26.
Liprandi
,
D.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2020
, “
A Theoretical-Numerical Model for the Peeling of Elastic Membranes
,”
J. Mech. Phys. Solids
,
136
, p.
103733
.
27.
Kim
,
D.-H.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y.-S.
,
Kim
,
R.-H.
,
Wang
,
S.
,
Wu
,
J.
,
Won
,
S. M.
,
Tao
,
H.
,
Islam
,
A.
,
Yu
,
K. J.
,
Kim
,
T.-I.
,
Chowdhury
,
R.
,
Ying
,
M.
,
Xu
,
L.
,
Li
,
M.
,
Chung
,
H.-J.
,
Keum
,
H.
,
McCormick
,
M.
,
Liu
,
P.
,
Zhang
,
Y.-W.
,
Omenetto
,
F. G.
,
Huang
,
Y.
,
Coleman
,
T.
, and
Rogers
,
J. A.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
28.
Zhao
,
H.
,
Miranda
,
P.
,
Lawn
,
B. R.
, and
Hu
,
X. Z.
,
2002
, “
Cracking in Ceramic/Metal/Polymer Trilayer Systems
,”
J. Mater. Res.
,
17
(
5
), pp.
1102
1111
.
29.
Kriese
,
M. D.
,
Gerberich
,
W. W.
, and
Moody
,
N. R.
,
1999
, “
Quantitative Adhesion Measures of Multilayer Films: Part I. Indentation Mechanics
,”
J. Mater. Res.
,
14
(
7
), pp.
3007
3018
.
30.
Dauskardt
,
R.
,
Lane
,
M.
,
Ma
,
Q.
, and
Krishna
,
N.
,
1998
, “
Adhesion and Debonding of Multi-Layer Thin Film Structures
,”
Eng. Fract. Mech.
,
61
(
1
), pp.
141
162
.
31.
Tucker
,
M. B.
,
Hines
,
D. R.
, and
Li
,
T.
,
2009
, “
A Quality Map of Transfer Printing
,”
J. Appl. Phys.
,
106
(
10
), p.
103504
.
32.
Feng
,
X.
,
Meitl
,
M. A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2007
, “
Competing Fracture in Kinetically Controlled Transfer Printing
,”
Langmuir
,
23
(
25
), pp.
12555
12560
.
33.
Jain
,
S.
,
Yang
,
T. H.
,
Negley
,
M.
,
Na
,
S. R.
,
Liechti
,
K. M.
, and
Bonnecaze
,
R. T.
,
2019
, “
A Parametric Cohesive Zone Beam Theory Analysis of Mixed-Mode Graphene Transfer
,”
Int. J. Adhes. Adhes.
,
89
, pp.
129
138
.
34.
Williams
,
J. G.
, and
Hadavinia
,
H.
,
2002
, “
Analytical Solutions for Cohesive Zone Models
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
809
825
.
35.
Ouyang
,
Z.
, and
Li
,
G.
,
2009
, “
Local Damage Evolution of Double Cantilever Beam Specimens During Crack Initiation Process: A Natural Boundary Condition Based Method
,”
ASME J. Appl. Mech.
,
76
(
5
), p.
051003
.
36.
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2015
, “
Effect of Bending Stiffness on the Peeling Behavior of an Elastic Thin Film on a Rigid Substrate
,”
Phys. Rev. E
,
91
(
4
), p.
042401
.
37.
Linghu
,
C.
,
Zhang
,
S.
,
Wang
,
C.
, and
Song
,
J.
,
2018
, “
Transfer Printing Techniques for Flexible and Stretchable Inorganic Electronics
,”
npj Flexible Electron.
,
2
(
1
), p.
26
.
38.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
39.
Yin
,
H. B.
,
Liang
,
L. H.
,
Wei
,
Y. G.
,
Peng
,
Z. L.
, and
Chen
,
S. H.
,
2020
, “
Determination of the Interface Properties in an Elastic Film/Substrate System
,”
Int. J. Solids Struct.
,
191
, pp.
473
485
.
40.
Wei
,
Y.
,
2004
, “
Modeling Nonlinear Peeling of Ductile Thin Films–Critical Assessment of Analytical Bending Models Using FE Simulations
,”
Int. J. Solids Struct.
,
41
(
18
), pp.
5087
5104
.
41.
Peng
,
Z. L.
,
Yin
,
H. B.
,
Yao
,
Y.
, and
Chen
,
S. H.
,
2019
, “
Effect of Thin-Film Length on the Peeling Behavior of Film-Substrate Interfaces
,”
Phys. Rev. E
,
100
(
3
), p.
032804
.
You do not currently have access to this content.