Abstract

Stretchable electronics employing island-bridge structure design can achieve controllable and reversible stretchability. The use of a porous substrate, which provides excellent breathability for wearable devices bonded to skin, not only satisfies this static superiority but also has a profound impact on the dynamic performance of the stretchable electronics. In this paper, the vibration characteristics of the island-bridge structure based on porous polydimethylsiloxane (p-PDMS) substrates are studied by utilizing an analytical model, which takes account of geometric nonlinearity due to mid-plane stretching, buckling configuration, elastic boundary conditions considering the p-PDMS substrates and the mass of the island. In numerical examples, the accuracy of the analytical model is first verified by finite element analysis (FEA). After that, we investigate the effects of some primary factors, i.e., the prestrain of the substrate, spring stiffnesses at the ends of the interconnect, porosity and thickness of the substrate, and the mass of the island, on the natural frequencies and vibration mode shapes of the island-bridge structure. Results show that the vibration characteristics of the island-bridge structure can be tuned conveniently by adjusting the porosity of the substrate and the mass of the island, which are expected to be helpful to mechanical design and optimization of stretchable electronics in complex noise environments.

References

1.
Yin
,
Y.
,
Li
,
M.
,
Li
,
Y.
, and
Song
,
J.
,
2020
, “
Skin Pain Sensation of Epidermal Electronic Device/Skin System Considering Non-Fourier Heat Conduction
,”
J. Mech. Phys. Solids
,
138
, p.
103927
.
2.
Chen
,
Y.
,
Lu
,
S.
,
Zhang
,
S.
,
Li
,
Y.
,
Qu
,
Z.
,
Chen
,
Y.
,
Lu
,
B.
,
Wang
,
X.
, and
Feng
,
X.
,
2017
, “
Skin-Like Biosensor System Via Electrochemical Channels for Noninvasive Blood Glucose Monitoring
,”
Sci. Adv.
,
3
(
12
), p.
e1701629
.
3.
Wang
,
X.
,
Yang
,
J.
,
Meng
,
K.
,
He
,
Q.
,
Zhang
,
G.
,
Zhou
,
Z.
,
Tan
,
X.
,
Feng
,
Z.
,
Sun
,
C.
,
Yang
,
J.
, and
Wang
,
Z.
,
2021
, “
Enabling the Unconstrained Epidermal Pulse Wave Monitoring via Finger-Touching
,”
Adv. Funct. Mater.
,
31
(
32
), p.
2102378
.
4.
Li
,
S.
,
Park
,
Y.
,
Luan
,
H.
,
Wang
,
H.
,
Kwon
,
K.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2021
, “
Measurement of Blood Pressure Via a Skin-Mounted, Non-Invasive Pressure Sensor
,”
ASME J. Appl. Mech.
,
88
(
10
), p.
101101
.
5.
Kim
,
D.
,
Lu
,
N.
,
Ma
,
R.
,
Kim
,
Y. S.
,
Kim
,
R. H.
,
Wang
,
S.
,
Wu
,
J.
,
et al.
,
2011
, “
Epidermal Electronics
,”
Science
,
333
(
6044
), pp.
838
843
.
6.
Liu
,
G.
,
Sun
,
L.
, and
Su
,
Y.
,
2020
, “
Scaling Effects in the Mechanical System of the Flexible Epidermal Electronics and the Human Skin
,”
ASME J. Appl. Mech.
,
87
(
8
), p.
081007
.
7.
Zhang
,
S.
,
Wang
,
C.
,
Linghu
,
C.
,
Wang
,
S.
, and
Song
,
J.
,
2021
, “
Mechanics Strategies for Implantation of Flexible Neural Probes
,”
ASME J. Appl. Mech.
,
88
(
1
), p.
010801
.
8.
Li
,
H.
,
Gao
,
F.
,
Wang
,
P.
,
Yin
,
L.
,
Ji
,
N.
,
Zhang
,
L.
,
Zhao
,
L.
,
Hou
,
G.
,
Lu
,
B.
,
Chen
,
Y.
,
Ma
,
Y.
, and
Feng
,
X.
,
2021
, “
Biodegradable Flexible Electronic Device with Controlled Drug Release for Cancer Treatment
,”
ACS Appl. Mater. Interfaces
,
13
(
18
), pp.
21067
21075
.
9.
Zhang
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2015
, “
Mechanics of Stretchable Batteries and Supercapacitors
,”
Curr. Opin. Solid State Mater. Sci.
,
19
(
3
), pp.
190
199
.
10.
Mackanic
,
D. G.
,
Kao
,
M.
, and
Bao
,
Z.
,
2020
, “
Enabling Deformable and Stretchable Batteries
,”
Adv. Energy Mater.
,
10
(
29
), p.
2001424
.
11.
Gonzalez
,
M.
,
Axisa
,
F.
,
Bulcke
,
M. V.
,
Brosteaux
,
D.
,
Vandevelde
,
B.
, and
Vanfleteren
,
J.
,
2008
, “
Design of Metal Interconnects for Stretchable Electronic Circuits
,”
Microelectron. Reliab.
,
48
(
6
), pp.
825
832
.
12.
Kim
,
D. H.
,
Liu
,
Z.
,
Kim
,
Y. S.
,
Wu
,
J.
,
Song
,
J.
,
Kim
,
H. S.
,
Huang
,
Y.
,
Hwang
,
K. C.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2009
, “
Optimized Structural Designs for Stretchable Silicon Integrated Circuits
,”
Small
,
5
(
24
), pp.
2841
2847
.
13.
Kim
,
D. H.
,
Song
,
J.
,
Choi
,
W. M.
,
Kim
,
H. S.
,
Kim
,
R. H.
,
Liu
,
Z. J.
,
Huang
,
Y.
,
Hwang
,
K. C.
,
Zhang
,
Y.
, and
Rogers
,
J. A.
,
2008
, “
Materials and Noncoplanar Mesh Designs for Integrated Circuits With Linear Elastic Responses to Extreme Mechanical Deformations
,”
Proc. Natl. Acad. Sci.
,
105
(
48
), pp.
18675
18680
.
14.
Lacour
,
S. P.
,
Jones
,
J.
,
Wagner
,
S.
,
Li
,
T.
, and
Suo
,
Z.
,
2005
, “
Stretchable Interconnects for Elastic Electronic Surfaces
,”
Proc. IEEE
,
93
(
8
), pp.
1459
1467
.
15.
Kim
,
D. H.
,
Ahn
,
J. H.
,
Choi
,
W. M.
,
Kim
,
H. S.
,
Kim
,
T. H.
,
Song
,
J.
,
Huang
,
Y.
,
Liu
,
Z.
,
Lu
,
C.
, and
Rogers
,
J. A.
,
2008
, “
Stretchable and Foldable Silicon Integrated Circuits
,”
Science
,
320
(
5875
), pp.
507
511
.
16.
Song
,
J.
,
Huang
,
Y.
,
Xiao
,
J.
,
Wang
,
S.
,
Hwang
,
K. C.
,
Ko
,
H.
,
Kim
,
D. H.
,
Stoykovich
,
M.
, and
Rogers
,
J. A.
,
2009
, “
Mechanics of Noncoplanar Mesh Design for Stretchable Electronic Circuits
,”
AIP J. Appl. Phys.
,
105
(
12
), p.
123516
.
17.
Yuan
,
J. H.
,
Pharr
,
M.
,
Feng
,
X.
,
Rogers
,
J. A.
, and
Huang
,
Y.
,
2016
, “
Design of Stretchable Electronics Against Impact
,”
ASME J. Appl. Mech.
,
83
(
10
), p.
101009
.
18.
Nie
,
S.
,
Cai
,
M.
,
Wang
,
C.
, and
Song
,
J.
,
2020
, “
Fatigue Life Prediction of Serpentine Interconnects on Soft Elastomers for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011011
.
19.
Li
,
K.
,
Chen
,
L.
,
Zhu
,
F.
, and
Huang
,
Y.
,
2021
, “
Thermal and Mechanical Analyses of Compliant Thermoelectric Coils for Flexible and Bio-Integrated Devices
,”
ASME J. Appl. Mech.
,
88
(
2
), p.
021011
.
20.
Bian
,
Z.
,
Yang
,
S.
,
Zhou
,
X.
, and
Hui
,
D.
,
2020
, “
Band Gap Manipulation of Viscoelastic Functionally Graded Phononic Crystal
,”
Nanotechnol. Rev.
,
9
(
1
), pp.
515
523
.
21.
Akl
,
W. N.
, and
Baz
,
A.
,
2007
, “
Finite Element Modeling of Smart Foam for Active Vibration and Noise Control Applications
,”
Mech. Adv. Mater. Struct.
,
14
(
6
), pp.
477
498
.
22.
Buchaillot
,
L.
,
Millet
,
O.
,
Quévy
,
E.
, and
Collard
,
D. J.
,
2008
, “
Postbuckling Dynamic Behavior of Self-Assembled 3D Microstructures
,”
Microsyst. Technol.
,
14
(
1
), pp.
69
78
.
23.
Wang
,
Y.
, and
Feng
,
X.
,
2009
, “
Dynamic Behaviors of Controllably Buckled Thin Films
,”
Appl. Phys. Lett.
,
95
(
23
), p.
231915
.
24.
Wang
,
H.
,
Ning
,
X.
,
Li
,
H.
,
Luan
,
H.
,
Xue
,
Y.
,
Yu
,
X.
,
Fan
,
Z.
,
Li
,
L.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2018
, “
Vibration of Mechanically-Assembled 3D Microstructures Formed by Compressive Buckling
,”
J. Mech. Phys. Solids
,
112
, pp.
187
208
.
25.
Li
,
H.
,
Wang
,
X.
,
Zhu
,
F.
,
Ning
,
X.
,
Wang
,
H.
,
Rogers
,
J. A.
,
Zhang
,
Y.
, and
Huang
,
Y.
,
2018
, “
Viscoelastic Characteristics of Mechanically Assembled Three-Dimensional Structures Formed by Compressive Buckling
,”
ASME J. Appl. Mech.
,
85
(
12
), p.
121002
.
26.
Fan
,
X.
,
Wang
,
Y.
,
Li
,
Y.
, and
Fu
,
H.
,
2020
, “
Vibration Analysis of Post-Buckled Thin Film on Compliant Substrates
,”
Sensors
,
20
(
18
), p.
5425
.
27.
Wang
,
Y.
,
Cui
,
X.
,
Fu
,
H.
,
Zhao
,
Q.
, and
Li
,
Y.
,
2021
, “
Dynamic Behaviors of Postbuckled Thin Film on Flexible Substrates Considering Viscoelastic Effects
,”
ASME J. Appl. Mech.
,
88
(
4
), p.
041007
.
28.
Wu
,
S.
,
Zhang
,
J.
,
Ladani
,
R. B.
,
Ravindran
,
A. R.
,
Mouritz
,
A. P.
,
Kinloch
,
A. J.
, and
Wang
,
C.
,
2017
, “
Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors
,”
ACS Appl. Mater. Interfaces
,
9
(
16
), pp.
14207
14215
.
29.
Huang
,
C.
,
Bian
,
Z.
,
Fang
,
C.
,
Zhou
,
X.
, and
Song
,
J.
,
2018
, “
Experimental and Theoretical Study on Mechanical Properties of Porous PDMS
,”
ASME J. Appl. Mech.
,
85
(
4
), p.
041009
.
30.
Zhao
,
S.
,
Zhu
,
F.
,
Yan
,
Z.
,
Li
,
D.
,
Xiang
,
J.
,
Huang
,
Y.
, and
Luan
,
H.
,
2020
, “
A Nonlinear Mechanics Model of Zigzag Cellular Substrates for Stretchable Electronics
,”
ASME J. Appl. Mech.
,
87
(
6
), p.
061006
.
31.
Chen
,
H.
,
Miao
,
L.
,
Su
,
Z.
,
Song
,
Y.
,
Han
,
M.
,
Chen
,
X.
,
Cheng
,
X.
,
Chen
,
D.
, and
Zhang
,
H.
,
2017
, “
Fingertip-Inspired Electronic Skin Based on Triboelectric Sliding Sensing and Porous Piezoresistive Pressure Detection
,”
Nano Energy
,
40
, pp.
65
72
.
32.
Jeong
,
G. S.
,
Baek
,
D. H.
,
Jung
,
H. C.
,
Song
,
J.
,
Moon
,
J. H.
,
Hong
,
S.
,
Kim
,
I. Y.
, and
Lee
,
S. H.
,
2012
, “
Solderable and Electroplatable Flexible Electronic Circuit on A Porous Stretchable Elastomer
,”
Nat. Commun.
,
3
(
1
), pp.
1
8
.
33.
Liu
,
W.
,
Chen
,
Z.
,
Zhou
,
G.
,
Sun
,
Y.
,
Lee
,
H.
,
Liu
,
C.
,
Yao
,
H.
,
Bao
,
Z.
, and
Cui
,
Y.
,
2016
, “
3D Porous Sponge-Inspired Electrode for Stretchable Lithium-Ion Batteries
,”
Adv. Mater.
,
28
(
18
), pp.
3578
3583
.
34.
Fang
,
C.
,
Bian
,
Z.
,
Pan
,
P.
, and
Song
,
X.
,
2019
, “
Experimental and Theoretical Study on Thermal Properties of Porous PDMS
,”
Mech. Adv. Mater. Struct.
,
28
(
8
), pp.
784
790
.
35.
Pan
,
P.
,
Bian
,
Z.
,
Song
,
X.
, and
Zhou
,
X.
,
2020
, “
Properties of Porous PDMS and Stretchability of Flexible Electronics in Moist Environment
,”
ASME J. Appl. Mech.
,
87
(
10
), p.
101009
.
36.
Nayfeh
,
A. H.
, and
Emam
,
S. A.
,
2008
, “
Exact Solution and Stability of Postbuckling Configurations of Beams
,”
Nonlinear Dyn.
,
54
(
4
), pp.
395
408
.
37.
Xing
,
J.
, and
Wang
,
Y.
,
2013
, “
Free Vibrations of a Beam with Elastic End Restraints Subject to a Constant Axial Load
,”
Arch. Appl. Mech.
,
83
(
2
), pp.
241
252
.
38.
Jones
,
R.
, and
Xenophontos
,
J.
,
1977
, “
The Vlasov Foundation Model
,”
Int. J. Mech. Sci.
,
19
(
6
), pp.
317
323
.
You do not currently have access to this content.